» » Тепловой насос для отопления дома: принцип работы, разновидности и использование. Система отопления с тепловым насосом Тепловой насос принцип работы

Тепловой насос для отопления дома: принцип работы, разновидности и использование. Система отопления с тепловым насосом Тепловой насос принцип работы

Из года в год перед покупкой оборудования для отопления своего дома у потребителей возникает законный вопрос об экономии средств на процессе обогрева. Этот момент волнует многих из-за постоянного роста цен на все известные виды топлива. Несколько десятков лет тому назад учеными был предложен альтернативный вариант – добывать энергию из окружающего пространства. Эта система получила название тепловых насосов отопления и эффективно используется в европейских странах и Японии.

Задачи, решаемые установкой теплового насоса

Оборудование позволяет производить отопление дома и поддерживать постоянную температуру в холодное время года. В летний период такая система поможет избежать жары в помещении, так как многие насосы оснащены обратной функцией охлаждения . Каждый хозяин вправе выбрать для себя единственно приемлемый для него вид отопления дома и подогрева воды. Но основными аспектами применения тепловых агрегатов, которые определяют спрос, являются: экологическая чистота, безопасность эксплуатации, комфортные условия, экономичность, долгий срок работы, приемлемый дизайн.

Ежегодное подорожание энергоносителей приводит к тому, что потребители отдают предпочтение установке дорогостоящего оборудования для отопления дома, которое не требует в дальнейшем затрат на приобретение газа, твердого или жидкого топлива. Тепловым насосам не нужно серьезное периодическое обслуживание и они работают более продолжительный срок.

В некоторых домах свыше 150 м2 применяют геотермальные способы отопления вместе с резервным котлом отопления. Такая комбинация позволяет окупить вложенные средства после 5 лет пользования . Тепло земли с низкой потенциальностью насос преобразовывает в постоянный теплоноситель с температурой не ниже 75ºС. При этом потраченный киловатт электрической энергии способствует выделению около 6 киловатт тепловой.

В летний период пассивная модель охлаждения позволяет циркулировать по контуру теплоносителя, который охлаждается в земле, где температура составляет 5–7ºС. Электричество, затраченное на работу циркуляционного насоса по стоимости гораздо дешевле, чем работа стандартного кондиционирования всей площади дома в жаркое время года.

Для увеличения эффективности работы насоса к нему можно подключать дополнительные контуры для обогрева бассейна, использовать летом энергию солнечного коллектора.

Насосы к тепловым трубопроводам

Описание

Планета представляет собой раскаленное ядро, покрытое толстым слоем твердого вещества. Когда-нибудь ядро остынет, так как в отличие от звезд, у земли нет своего источника тепла. Но говорить о продолжительности того периода, за который изменится температура почвы, не стоит, так как даже наша цивилизация этого не ощутит. Именно поэтому грунт на сравнительно небольшой глубине до 50 м существует в постоянно подогретом состоянии , с температурой около 12ºС. Глубина может отличаться от указанной в зависимости от климата местности.

Тепловые геотермальные насосы можно использовать даже в зонах вечной мерзлоты, только искать тепло придется на большой глубине.

Принцип действия

Тепловой насос используется для извлечения низкой энергии тепла окружающей среды. Он преобразовывает ее в высокотемпературную энергию для передачи теплоносителю в контуре отопительной системы. Работа насоса основывается на применении физических и химических законов . Массы воздуха, воды и земли вокруг постоянно аккумулируют солнечную энергию, которая используется в работе системы отопления.

Установка теплового отопительного насоса напоминает работу холодильника, только в обратной последовательности. В холодильном агрегате присутствует морозильная камера (испаритель) , которая снабжает его холодом. Излишнее количество тепла поступает на конденсаторную решетку сзади холодильника и выбрасывается в воздух.

Тепловой насос имеет испаритель, расположенный в таком месте, что он находится в контакте с источником природной энергии низкого тепла:

  • пластами недр земли , расположенными ниже точки промерзания поверхности при помощи наклонных или вертикальных скважин;
  • водных глубин термальных незамерзающих водоемов опусканием на нужную глубину;
  • воздушными массами снаружи дома.

В таком геотермальном устройстве конденсатор работает как устройство для теплообмена, отдающего тепло для нагревания теплоносителя в отопительном контуре дома, которое поступает для окончательно раздачи в калориферы и радиаторы.

Для развернутого понятия представим контур, в котором движется химический элемент хладагент , присутствовующий там в виде жидкости или газа. Движение его происходит за счет работы компрессора. Хладагент нагревается при сжимании, поэтому в конструкции добавляется расширительный клапан.

В системе ставится два теплообменника. Один из них работает как испаритель в холодной области и служит для понижения температуры воздуха или воды по принципу кондиционера или холодильника. Второй работает как конденсатор в горячей области и нагревает воду для системы отопления.

Остаточным действием является определение источника для сбора тепла, который отдает энергию зондам, контурам труб большой протяженности на дне водоемов или ниже точки промерзания, воздушным источникам.

Три контура в системе тепловых насосов:

Производители предрекают срок эксплуатации не менее 20 лет, но такие понятия, как трение и износ выведут насос из строя гораздо раньше. Реально можно установить продолжительность работы теплового оборудования без ремонта в 10–12 лет.

Природные источники тепла

Земные недра

Являются бесплатным генератором тепла. На глубине, где грунт никогда не замерзает, держится плюсовая стабильная температура, которая не меняется в зависимости от сезона.

Для сбора низкотемпературного тепла из почвы применяют два способа:

  • бурение вертикальных коллекторов , скважин на глубину от 50 до 200 м для забора воды и прогона его через теплообменник и передача ее в водоем после использования;
  • прокладка трубопровода на участке дома на глубине более одного метра и расстоянием между контурами не менее одного метра с обратной засыпкой и поливкой влагой.

Вода

Собрать достаточное количество тепла в водяных массах можно в случае, если есть незамерзающее озеро с проточной водой или высоко поднимается грунтовая вода. На дно укладывается трубопровод большой протяженности , фиксирующийся при помощи грузов, которые ставятся из расчета 5 кг на 1 погонный метр. Чтобы работа теплообменника длиной примерно 300 метров была эффективной, расстояние между витками труб не должно быть менее 1,5 м.

Для работы такой системы чаще всего применяют принцип открытого сбора тепла. Он подразумевает, что по ходу перемещения грунтовых вод делается две скважины, первая служит для сбора воды насосом и подачи на теплообменник. Во вторую происходит сброс использованной охлажденной воды.

Риск нарушения функционирования состоит в том, высота подъема грунтовых вод может изменяться в зависимости от периода дождей и перемещения земельных пластов.

Воздух

Самым распространенным и легкодоступным источником тепла является атмосфера. Теплообменник выполняется по типу большого радиатора с достаточным количеством ребер и вентилятором обдува. Такой тепловой насос расчитан на отопление и на подачу горячей воды хозяевам дома. Часто простейшие устройства подобного типа применяют для подогрева воды в зимних бассейнах. Затраты электрической энергии при этом минимальны.

Наружные теплообменники монтируют на кровле дома или на его стене. Если предполагается мощное оборудование, тогда для его установки нужно создавать дополнительное основание в виде фундамента.

Тепловые установки, извлекающие тепло из атмосферы, большей частью инверторные. В них происходит преобразование переменного тока , что позволяет компрессору работать с полной отдачей. При нагревании теплоносителя до нужной температуры не происходит остановки оборудования, только снижается мощность. Таким образом, увеличивается срок службы оборудования.

Обзор разновидностей тепловых насосов

Насосы «воздух-вода»

Собирают тепло из атмосферы и нагревают жидкость в отопительной системе. Выпускают стандартные и компактные модели. Устанавливать можно как в процессе ремонта здания, так и при новом строительстве дома. Обеспечивают нагревание теплоносителя до 60ºС при наружной температуре до -20ºС. При самой тяжелой работе мощность достигает 20 кВт. Некоторые системы снабжаются дополнительным подогревом с помощью электричества для работы в экстремальных условиях или подогревания системы для размораживания.

Тепловая система «рассол-вода»

Получает энергию из недр земли посредством установки специальных геотермальных зондов. В системе ставится два расширительных теплообменника, которые работают на тепло и охлаждение. Мощность установки 16 кВт . Применяется новая по конструкции система, состоящая из последовательно соединенных агрегатов-модулей до 6 штук, потребляющая суммарную мощность до 50 кВт.

Тепловая установка «вода-вода»

Насосы отличаются высоким качеством, заложенным в процессе производства. Имеют в конструкции теплообменник в виде пластин. Почти все важные элементы изготавливаются из нержавейки и ее сплавов. Расширительный бак при необходимости легко подключается к почвенным насосам. Мощность работы 6 кВт . Все модели оснащены полностью автоматическим управлением.

Тепловые насосы по типу работы «воздух-воздух»

Они способны не только подогревать воду, но и воздух в помещении. К ним относят сплит-системы . Тоже возможна установка каскадного варианта мощностью до 50 кВт.

Геотермальные «грунт-вода»

Очень хорошо зарекомендовали себя для отопления в частных домах и промышленных объектах. Для сбора тепла бурят скважины различной глубины , присутствуют все элементы полной автоматизации управления. Работают от глубинных или поверхностных коллекторов.

Стоимость оборудования и установки теплового насоса

Цена теплового насоса определяется несколькими факторами. Для этого принимают во внимание площадь отапливаемого дома, наличие дополнительных труб различных вариантов отопления. Кроме того, играет роль тип устанавливаемого насоса по принципу сбора природного тепла из окружающей среды и по мощности.

Очень большое внимание уделяется утеплению ограждающих конструкций жилого дома, так как потери тепла будут влиять на требуемую мощность насоса. Если для сравнения использовать тепловой агрегат мощностью от 10 до 20 кВт , то в доме со стандартными потерями тепла (неутепленные стены) он сможет эффективно обогреть площадь до 220 м2, в тщательно утепленном доме пространство увеличится до 420м2. А в полностью изолированном от тепловых потерь современном жилище насосом такой мощности можно успешно отопить площадь до 750 м2.

Цена геотермального оборудования включает в себя монтажные и земляные работы вплоть до буферной емкости отопительной системы дома и стоимость теплового насоса.

В случае стандартного небольшого дома площадью до 130 м2 при использовании грунтового забора тепла, стоимость оборудования составит около 430 000 рублей , а установка обойдется в 300 000 рублей. Применение горизонтального почвенного коллектора снизит затраты на установку до 150 000 рублей, но цена оборудования останется прежней.

Самой дешевой системой отопления для такого дома можно считать систему воздушного забора тепла и передачи ее водному теплоносителю. Цена оборудования существенно ниже и составляет около 350 000 рублей , стоимость монтажа при этом 80 000 рублей.

Если говорить о скважинах глубокого бурения в районах с пониженной точкой промерзания и для отопления дома площадью до 400 м2, то стоимость оборудования может достичь 800 000 рублей , монтажные работы обойдутся в 355 000 рублей.

Применение почвенных, водных и воздушных тепловых насосов очень облегчит жизнь хозяевам дома, которые не будут заострять внимание на заготовке топлива, его транспортировке и хранении. Кроме того, комфорт и отсутствие потребности в постоянном обслуживании сделают систему незаменимой для каждого потребителя.

Тепловой насос - это устройство, которое может обеспечивать вашему дому отопление зимой, охлаждение летом и производство горячей воды круглый год.

Тепловой насос использует энергию возобновляемых источников - нагретого воздуха, земли, скальных пород или воды - для производства тепловой энергии. Это преобразование осуществляется с помощью особых веществ - .

Принцип действия теплового насоса

Конструктивно любой тепловой насос состоит из двух частей: наружной, которая «забирает» тепло возобновляемых источников, и внутренней, которая отдает это тепло в систему отопления или кондиционирования вашего дома. Современные тепловые насосы отличаются высокой энергоэффективностью, что в практическом плане означает следующее - потребитель, т.е. владелец дома, используя тепловой насос, тратит на обогрев или охлаждение своего жилища, в среднем, всего четверть тех денег, которые он потратил бы, если теплового насоса не было.

Иначе говоря, в системе с тепловым насосом 75% полезного тепла (или холода) обеспечивается за счет бесплатных источников - тепла земли, грунтовых вод или нагретого в помещениях и выбрасываемого на улицу использованного воздуха.

Рассмотрим, как действует, пожалуй, самый популярный в быту тепловой насос, работающий за счет тепла земли. Работа теплонасоса происходит в несколько циклов.

Цикл 1, испарение

Наружная часть «земляного» теплового насоса представляет собой замкнутую систему труб, зарытых в землю на определенную глубину, где температура круглый год стабильна и составляет 7-12°C. Чтобы «собрать» достаточное количество энергии земли, требуется, чтобы общая площадь, занимаемая системой подземных труб, была в 1,5-2 раза больше всей отапливаемой площади дома. Эти трубы заполнены хладагентом, который нагревается до температуры земли.

Хладагент имеет очень низкую температуру кипения, поэтому способен прейти в газообразное состояние уже при температуре грунта. Далее этот газ поступает в .

Цикл 2, сжатие

Именно этот компрессор и расходует всю необходимую для работы теплового насоса энергию, но по сравнению, к примеру, с отоплением от , эти затраты заметно ниже. К сравнению затрат мы вернемся позже.

Итак, нагретый до температуры 7-12°C газообразный хладагент из подземных труб в камере компрессора сильно сжимается, что приводит к его резкому нагреву. Чтобы понять это просто вспомните, как нагревается обычный велосипедный насос, когда вы накачиваете шины. Принцип тот же самый.


Хозяину на заметку

«Тепловой насос - современное отопление. Но реальные значения эффективности теплонасосов зависят от температурных условий, т.е. в холодные дни их эффективность падает. Она составляет порядка 150% при температуре −20 °C, и порядка 300% при температуре источника +7 °C».

Цикл 3, конденсация

После цикла сжатия, мы получили горячий пар под высоким давлением, который подается уже во внутреннюю, «домашнюю» часть теплового насоса. Теперь этот газ может быть использован для системы воздушного отопления или для нагрева воды в системе водяного отопления и горячего водоснабжения. Также этот горячий пар может применяться с системой « ».

Отдавая тепло в систему отопления, горячий газ охлаждается, конденсируется и превращается в жидкость.

Цикл 4, расширение

Эта жидкость поступает в расширительный клапан, где ее давление понижается. Теперь жидкий хладагент низкого давления снова направляется в подземную часть для нагрева до температуры земли. И все циклы повторяются.

Эффективность использования тепловых насосов

На каждый 1 кВт электроэнергии, потребляемой тепловым насосом для работы его компрессора, в среднем, вырабатывается около 4 кВт полезной тепловой энергии. Это соответствует 300% эффективности.

Сравнение отопления с помощью теплового насоса с другими способами.

Данные представлены Европейской ассоциацией тепловых насосов (EHPA)

Тип отопления

Энергоэффективность, %

Следует понимать, что показатели эффективности тепловых насосов отличаются, в зависимости от конкретных условий, в которых действует ваше устройство. Так, если вы используете «земляной» тепловой насос, и у вас на участке глинистая почва, то эффективность теплонасоса будет примерно вдвое выше, чем если бы трубы теплового насоса лежали в песчаном грунте.

Также следует помнить, что укладка подземной части должна осуществляться ниже отметки промерзания грунта. Иначе тепловой насос работать вообще не будет.

Реальные значения эффективности тепловых насосов зависят от температурных условий, т.е. в холодные дни их эффективность падает. Она составляет порядка 150% при температуре −20 °C, и порядка 300% при температуре источника +7 °C. Но технологии не стоят на месте - современные модели отличается большей энергоэффективностью, причем эта тенденция сохраняется.

Тепловые насосы для охлаждения дома

По своему принципу действия тепловой насос аналогичен или . Поэтому в летнее время он может применяться не для обогрева дома, а для его охлаждения или кондиционирования. Вспомним, что, если речь идет о «земляном» теплонасосе, то температура грунта стабильна в пределах 7-12°C круглогодично. И с помощью теплового насоса она может передаваться в помещения дома.

Принцип работы системы охлаждения с помощью теплового насоса аналогичен системе отопления, только вместо радиаторов используются . При пассивном охлаждении теплоноситель просто циркулирует между фанкойлами и скважиной, т.е. холод из скважины напрямую поступает в систему кондиционирования, но сам компрессор при этом не работает. Если пассивного охлаждения недостаточно, включается компрессор теплового насоса, который дополнительно охлаждает теплоноситель.


Типы тепловых насосов

Бытовые тепловые насосы бывают 3-х основных типов, различающихся по внешнему источнику тепла:

  • «земляные» или «грунт-вода», «грунт-воздух»;
  • «водяные» или «вода-вода», «вода-воздух»;
  • «воздушные» или «воздух-вода», «воздух-воздух».

«Земляные» тепловые насосы

Самые популярные - это тепловые насосы, использующие тепло земли. О них уже шла речь выше. Это самые эффективные, но и самые дорогие из всех типов. Трубы, уходящие под землю, могут располагаться вертикально или горизонтально. В зависимости от этого, «земляные» тепловые насосы делятся на вертикальные и горизонтальные .

Вертикальные тепловые насосы требуют погружения труб, по которым циркулирует хладагент на значительную глубину: 50-200 м. Правда, есть альтернатива - сделать не одну такую скважину, а несколько, но более «мелких». Расстояние между такими скважинами должно быть не менее 10 м. Чтобы рассчитать глубину бурения, можно грубо прикинуть, что тепловой насос мощностью 10 кВт потребует скважины (одну или несколько) общей глубиной около 170 м. Следует также помнить, что бесполезно бурить очень мелкие - менее 50 м - скважины.

При горизонтальной укладке дорогостоящее бурение на большую глубину не требуется. Глубина заложения трубопроводов при этом способе - около 1 м, в зависимости от региона установки эта величина может как уменьшаться, так и увеличиваться. Труба с хладагентом при этом способе укладывается так, чтобы расстояние между соседними участками было не менее полутора метров, иначе сбор тепла не эффективен.


Хозяину на заметку

«Если вы живете в зоне умеренного климата - например, на Северо-Западе - то наиболее эффективный вариант для вас - тепловой насос, использующий тепло земли. Причем, лучше установить вертикальный вариант теплонасоса - особенно, если ваш дом находится на скальных породах».

Для установки теплового насоса мощностью 10 кВт необходима общая длина зарытой трубы порядка 350-450 м. Если принять во внимание ограничения, связанные с соседством разных участков между собой, то вам понадобится участок земли с размерами 20 на 20 метров. Есть ли такой свободный участок в наличии - большой вопрос.

Как выбрать нужный тепловой насос

Если вы живете в зоне умеренного климата - например, на Северо-Западе - то наиболее эффективный вариант для вас - тепловой насос, использующий тепло земли. Причем, лучше установить вертикальный вариант теплонасоса - особенно, если ваш дом находится на скальных породах, где найти свободный обширный участок земли проблематично. Но такой тип теплового насоса наиболее дорог по сумме капитальных затрат.

В зоне с мягким климатом - например, в Сочи - можно установить тепловой насос «воздух-вода», который не требует чрезмерных капитальных затрат и особенно эффективен в местности, где сезонные колебания температур сравнительно невелики.

В зависимости от принципа действия, бывают и . Более популярны модели, работающие от электричества.


Еще одно важное замечание. Хорошей идеей являются комбинированные модели тепловых насосов, которые совмещают классический вариант теплонасоса с газовым или электрическим нагревателем. Такие нагреватели могут применяться при неблагоприятных погодных условиях, когда эффективность теплового насоса снижается. Как уже говорилось, особенно снижение эффективности свойственно тепловым насосам «воздух-вода» и «воздух-воздух».

Комбинация этих двух источников тепла позволяет снизить стоимость капитальных затрат и увеличить срок окупаемости теплонасосной установки.

Преимущества и недостатки тепловых насосов

Главным достоинством тепловых насосов являются их низкие эксплуатационные расходы. Т.е. стоимость произведенного тепла или охлаждения для конечного потребителя является самой низкой по сравнению с другими способами отопления/кондиционирования. Кроме этого, система с тепловым насосом практически безопасна для дома. Следовательно, упрощаются требования к системам вентиляции его помещений и повышается уровень пожарной безопасности. Что также положительно влияет на стоимость установки этих систем.

Тепловые насосы просты в эксплуатации и весьма надежны, а еще - практически бесшумны.

Еще один плюс - вы легко можете переключить тепловой насос с отопления на охлаждение в случае необходимости. Нужно лишь иметь дома не только отопительные , но и фанкойлы.

Что такое тепловой насос для дома ✮Большой выбор тепловых насосов на портале сайт

Но есть у них и минусы, главный из которых является оборотной стороной главного плюса - капитальные затраты на их установку весьма существенны. Еще одним недостатком тепловых насосов до недавнего времени была сравнительно низкая температура теплоносителя - не более 60 C. Но последние разработки дали возможность устранить этот недостаток. Правда, и цена на такие модели выше, чем на стандартные.

Оплачивать электроэнергию и теплоснабжение с каждым годом становится сложнее. При строительстве или покупке нового жилья проблема экономичного энергоснабжения становится особенно острой. Из-за периодически повторяющихся энергетических кризисов выгоднее увеличить первоначальные расходы на высокотехнологичное оборудование, чтобы потом десятилетиями получать тепло по минимальной стоимости.

Наиболее рентабельным вариантом в некоторых случаях является тепловой насос для отопления дома, принцип работы этого устройства довольно простой. Перекачивать тепло в прямом смысле этого слова невозможно. Но закон сохранения энергии позволяет техническим устройствам понижать температуру вещества в каком-то одном объеме, одновременно нагревая что-либо в другом месте.

Что такое тепловой насос (ТН)

Возьмем для примера обычный бытовой холодильник. Внутри морозильника вода быстро превращается в лед. Снаружи находится горячая на ощупь радиаторная решетка. От нее тепло, собранное внутри морозильной камеры, передается комнатному воздуху.

То же самое, но в обратной последовательности, делает ТН. Радиаторная решетка, расположенная снаружи здания, имеет гораздо большие размеры, чтобы собрать достаточно тепла из окружающей среды для обогрева жилья. Теплоноситель внутри трубок радиатора или коллектора отдает энергию отопительной системе внутри дома, а затем нагревается снова вне дома.

Устройство

Обеспечить дом теплом - это более сложная техническая задача, чем охладить небольшой объем холодильника, где установлен компрессор с морозильным и радиаторным контурами. Почти так же просто устроен воздушный ТН, который получает тепло из атмосферы и подогревает внутренний воздух. Добавляются только вентиляторы для обдува контуров.

Получить большой экономический эффект от установки системы «воздух-воздух» сложно из-за малого удельного веса атмосферных газов. Один кубический метр воздуха весит всего лишь 1,2 кг. Вода примерно в 800 раз тяжелее, поэтому теплотворная способность тоже имеет многократную разницу. Из 1 кВт электрической энергии, потраченной устройством типа «воздух-воздух», можно получить только 2 кВт тепла, а ТН «вода-вода» дает 5–6 кВт. Гарантировать такой высокий коэффициент полезного действия (КПД) может ТН.

Состав компонентов насоса:

  1. Система отопления дома, для которой лучше применить теплые полы.
  2. Бойлер для горячего водоснабжения.
  3. Конденсатор, передающий энергию, собранную вовне, к теплоносителю внутридомового отопления.
  4. Испаритель, отбирающий энергию у теплоносителя, который циркулирует во внешнем контуре.
  5. Компрессор, который перекачивает хладагент от испарителя, переводя его из газообразного в жидкое состояние, повышая давление и охлаждая в конденсаторе.
  6. Расширительный клапан, устанавливается перед испарителем для регулирования потока хладагента.
  7. Внешний контур укладывается на дно водоема, закапывается в траншеи или опускается в скважины. Для ТН типа «воздух-воздух» контуром служит наружная радиаторная решетка, обдуваемая вентилятором.
  8. Насосы перекачивают теплоноситель по трубам снаружи и внутри дома.
  9. Автоматика для управления по заданной программе обогрева помещения, которая зависит от изменений температуры наружного воздуха.

Внутри испарителя теплоноситель внешнего трубного регистра охлаждается, отдавая тепло хладагенту компрессорного контура, а затем насосом перекачивается по трубам на дне водоема. Там он нагревается и цикл вновь повторяется. В конденсаторе происходит передача тепла системе отопления коттеджа.

Цены на разные модели тепловых насосов

тепловой насос

Принцип работы

Открытый в начале XIX века французским ученым Карно термодинамический принцип переноса тепла потом был детализирован лордом Кельвином. Но практическая польза их трудов, посвященных решению проблемы отопления жилья от альтернативных источников, появилась только в последние пятьдесят лет.

В начале семидесятых годов прошлого столетия произошел первый энергетический кризис мирового масштаба. Поиски экономичных способов отопления привели к созданию устройств, способных собирать из окружающий среды энергию, концентрировать ее и направлять на обогрев дома.

В результате была разработана конструкция ТН со взаимодействующими между собой несколькими термодинамическими процессами:

  1. Когда хладагент компрессорного контура попадает в испаритель, давление и температура фреона почти мгновенно снижаются. Полученный в результате температурный перепад способствует отбору тепловой энергии от теплоносителя внешнего коллектора. Эта фаза называется изотермическим расширением.
  2. Затем происходит адиабатическое сжатие - компрессор увеличивает давление хладагента. При этом его температура возрастает до +70 °С.
  3. Проходя конденсатор, фреон становится жидкостью, так как при повышенном давлении отдает тепло контуру внутридомового отопления. Эта фаза называется изотермическим сжатием.
  4. Когда хладон проходит дроссель, давление и температура резко падают. Происходит адиабатическое расширение.

Нагревание внутреннего объема помещения по принципу ТН возможно только с использованием высокотехнологичного оборудования, снабженного автоматикой для управления всеми вышеперечисленными процессами. Кроме того, программируемые контроллеры регулируют интенсивность генерации тепла соответственно колебаниям температуры наружного воздуха.

Альтернативное топливо для насосов

Использовать углеродное топливо в виде дров, угля, газа для работы ТН вовсе не нужно. Источником энергии служит рассеянное в окружающем пространстве тепло планеты, внутри которой находится постоянно действующий ядерный реактор.

Твердая оболочка материковых плит плавает на поверхности жидкой раскаленной магмы. Иногда она прорывается наружу при вулканических извержениях. Вблизи вулканов встречаются геотермальные источники, где даже зимой можно купаться и загорать. Тепловой насос способен собирать энергию практически повсеместно.

Для работы с различными источниками рассеянного тепла существует несколько типов ТН:

  1. «Воздух-воздух». Извлекает энергию из атмосферы и нагревает воздушные массы внутри помещения.
  2. «Вода-воздух». Тепло собирается внешним контуром со дна водоема для последующего использования в вентиляционных системах.
  3. «Грунт-вода». Трубы для сбора тепла располагаются горизонтально под землей ниже уровня промерзания, чтобы даже в самый сильный мороз получать энергию для подогрева теплоносителя в отопительной системе здания.
  4. «Вода-вода». Коллектор раскладывают по дну водоема на глубине от трех метров, собранное тепло нагревает воду, циркулирующую в теплых полах внутри дома.

Существует вариант с открытым внешним коллектором, когда можно обойтись двумя скважинами: одна - для забора грунтовых вод, а вторая - для слива обратно в водоносный слой. Такой вариант возможен только при хорошем качестве жидкости, потому что фильтры быстро засоряются, если в составе теплоносителя имеется слишком много солей жесткости или взвешенных микрочастиц. Перед монтажом надо обязательно сделать анализ воды.

Если пробуренная скважина быстро заиливается или вода содержит много солей жесткости, тогда стабильная работа ТН обеспечивается бурением большего количества отверстий в земле. В них опускают петли герметичного внешнего контура. Затем скважины закупоривают с помощью тампонажа из смеси глины и песка.

Использование грунтовых насосов

Извлечь дополнительную пользу из участков, занятых газонами или цветниками, можно с помощью ТН типа «грунт-вода». Для этого нужно уложить в траншеи трубы на глубину ниже уровня промерзания для сбора подземного тепла. Расстояние между параллельными траншеями не менее 1,5 м.

На юге России даже в экстремально холодные зимы земля замерзает максимум на 0,5 м, поэтому проще снять грейдером полностью слой земли на монтажном участке, уложить коллектор, а затем засыпать экскаватором котлован. На этом месте нельзя сажать кустарники и деревья, корни которых способны повредить внешний контур.

Количество получаемого тепла от каждого метра трубы зависит от типа почвы:

  • сухой песок, глина - 10–20 Вт/м;
  • влажная глина - 25 Вт/м;
  • увлажненный песок и гравий - 35 Вт/м.

Площади прилегающего к дому участка земли может быть недостаточно для размещения внешнего регистра труб. Сухие песчаные грунты не дают достаточного теплового потока. Тогда применяют бурение скважин глубиной до 50 метров, чтобы достичь водоносного слоя. В скважины опускают U-образные петли коллектора.

Чем больше глубина, тем выше возрастает тепловая эффективность зондов внутри скважин. Температура земных недр повышается на 3 градуса каждые 100 м. Эффективность съема энергии скважинного коллектора может достигать 50 Вт/м.

Монтаж и запуск систем ТН - это технологически сложный комплекс работ, которые могут выполнить только опытные специалисты. Общая стоимость оборудования и комплектующих материалов значительно выше, если сравнивать с обычным газовым оборудованием для теплоснабжения. Поэтому срок окупаемости первоначальных затрат растягивается на годы. Но дом строится на десятилетия, а геотермальные тепловые насосы - самый выгодный способ отопления для загородных коттеджей.

Ежегодная экономия в сравнении с:

  • газовым котлом - 70 % ;
  • электрообогревом - 350 %;
  • твердотопливным котлом - 50 %.

При расчете срока окупаемости ТН стоит учитывать эксплуатационные расходы за все время службы оборудования - минимум 30 лет, тогда экономия многократно превысит первоначальные затраты.

Насосы типа «вода-вода»

Разместить на дне близлежащего водоема полиэтиленовые трубы коллектора может практически любой человек. Для этого не понадобится больших профессиональных знаний, навыков, инструментов. Достаточно равномерно распределить витки бухты по поверхности воды. Между витками должно быть расстояние не менее 30 см, а глубина затопления не менее 3 м. Затем надо привязать грузы к трубам, чтобы они ушли на дно. Тут вполне подойдет некондиционный кирпич или природный камень.

На монтаж коллектора ТН типа «вода-вода» потребуется значительно меньше времени и денег, чем при рытье траншей или бурении скважин. Расходы на приобретение труб также будут минимальными, поскольку съем тепла при конвективном теплообмене в водной среде достигает 80 Вт/м. Очевидная выгода применения ТН - не нужно сжигать углеродное топливо для получения тепла.

Альтернативный способ отопления дома становится все более востребованным, поскольку обладает еще несколькими преимуществами:

  1. Экологически безопасен.
  2. Использует возобновляемый источник энергии.
  3. После окончания пусконаладочных работ отсутствуют регулярные затраты расходных материалов.
  4. Автоматически регулирует нагревание внутри дома по температуре наружного воздуха.
  5. Срок окупаемости начальных затрат 5–10 лет.
  6. Можно подключить бойлер для горячего водоснабжения коттеджа.
  7. Летом работает как кондиционер, охлаждая приточный воздух.
  8. Срок службы оборудования - более 30 лет.
  9. Минимальные энергозатраты - генерирует до 6 кВт тепла при использовании 1 кВт электричества.
  10. Полная независимость отопления и кондиционирования коттеджа при наличии электрогенератора любого типа.
  11. Возможна адаптация к системе «умный дом» для дистанционного управления, дополнительной экономии энергии.

Для работы ТН типа «вода-вода» необходимы три независимых системы: внешний, внутридомовой и компрессорный контуры. Они объединены в одну схему теплообменниками, в которых циркулируют различные теплоносители.

При проектировании системы энергоснабжения следует учитывать, что на перекачивание насосом теплоносителя по внешнему контуру расходуется электроэнергия. Чем больше длина труб, изгибов, поворотов, тем менее выгоден ТН. Оптимальное расстояние от дома до берега - 100 м. Его можно удлинить на 25 % за счет увеличения диаметра труб коллектора с 32 до 40 мм.

Воздушные - сплит и моно

Применять воздушные ТН выгоднее в южных регионах, где температура редко опускается ниже 0 °С, но современное оборудование способно работать и при -25 °С. Чаще всего устанавливают сплит-системы, состоящие из внутридомового и наружного блоков. Внешний комплект состоит из вентилятора, обдувающего радиаторную решетку, внутренний - из конденсаторного теплообменника и компрессора.

Конструкцией сплит-систем предусматривается реверсивное переключение режимов работы с помощью клапана. Зимой внешний блок является генератором тепла, а летом наоборот - отдает его наружному воздуху, работая как кондиционер. Воздушные ТН отличаются предельно простым монтажом внешнего блока.

Другие преимущества:

  1. Высокая эффективность работы наружного блока обеспечивается большой площадью теплообмена радиаторной решетки испарителя.
  2. Бесперебойная работа возможна при температуре наружного воздуха до -25 °С.
  3. Вентилятор размещается за пределами помещения, поэтому уровень шума находится в допустимых пределах.
  4. Летом сплит-система работает как кондиционер.
  5. Автоматически поддерживается заданная температура внутри помещения.

Проектируя отопление зданий, расположенных в регионах с продолжительной и морозной зимой, необходимо учитывать низкую эффективность воздушных ТН при отрицательных температурах. На 1 кВт затраченной электроэнергии приходится 1,5–2 кВт тепла. Поэтому надо предусматривать дополнительные источники теплоснабжения.

Самый простой монтаж ТН возможен в случае применения моноблочных систем. Внутрь помещения заходят только трубки с теплоносителем, а все остальные механизмы находятся снаружи в одном корпусе. Такая конструкция существенно повышает надежность работы оборудования, а также снижает шум до величины менее 35 дБ - это на уровне обычного разговора двух человек.

Когда установка насоса нерентабельна

Найти в городе свободные участки земли для расположения внешнего контура ТН типа «грунт-вода» практически невозможно. Проще установить на внешней стене здания воздушный тепловой насос, который особенно выгоден в южных регионах. Для более холодных территорий с продолжительными морозами существует вероятность обледенения наружной радиаторной решетки сплит-системы.

Высокий коэффициент полезного действия ТН обеспечивается при выполнении следующих условий:

  1. Обогреваемое помещение должно иметь утепленные внешние ограждающие конструкции. Максимальная величина тепловых потерь не может превышать 100 Вт/м 2 .
  2. ТН способен работать эффективно только с инерционной низкотемпературной системой «теплый пол».
  3. В северных регионах ТН следует использовать совместно с дополнительными источниками тепла.

Когда температура наружного воздуха резко падает, то инерционный контур «теплого пола» просто не успевает прогревать помещение. Зимой так бывает часто. Днем солнышко пригрело, на градуснике -5 °С. Ночью температура может быстро опуститься до -15 °С, а если подует сильный ветер, то мороз будет еще сильнее.

Тогда надо установить под окнами и вдоль наружных стен обычные батареи. Но температура теплоносителя в них должна быть в два раза выше, чем в контуре «теплого пола». Дополнительную энергию в загородном коттедже может дать камин с водяным контуром, а городской квартире - электрический котел.

Остается только определить, будет ли ТН основным или дополняющим источником тепла. В первом случае он должен компенсировать 70 % общего количества тепловых потерь помещения, а во втором - 30 %.

Видео

В ролике проводится визуальное сравнение достоинств и недостатков различных типов тепловых насосов, подробно объясняется устройство системы «воздух-вода».


Евгений Афанасьев главный редактор

Автор публикации 05.02.2019

Тепловые насосы становятся всё более популярными. С помощью этих устройств можно отапливать (охлаждать) дома и организовывать горячее водоснабжение, значительно экономя.

Людям, далёким от физики, достаточно сложно понять принцип действия тепловых насосов, в связи с чем в интернетах муссируется множество заблуждений, которыми пользуются недобросовестные производители и продавцы. В данной статье мы попытаемся в доступной форме объяснить принцип действия и развеять некоторые мифы, которыми успел обрасти этот замечательный агрегат.

Плюсы

Со школьной скамьи нам известно, что в обычных условиях более холодное вещество не может отдавать своё тепло более горячему, а наоборот, оно нагревается от него до тех пор, пока их температуры не сравняются. Это святая правда. Но тепловой насос создаёт такие условия, что более холодная среда начинает отдавать своё тепло более тёплой, охлаждаясь при этом ещё больше.

Простейший заезженный пример теплового насоса — холодильник. В нём тепло выкачивается из более холодной камеры в более тёплое помещение кухни. Морозилка при этом ещё больше охлаждается, а кухня ещё больше нагревается от радиатора, расположенного на задней панели холодильника.

Принцип работы большинства тепловых насосов основан на свойствах промежуточных теплоносителей (газов, чаще всего фреонов), которые используются в этих машинах. Именно фреоны и являются тем посредником, который позволяет забирать тепло у более холодного тела, отдавая его более горячему.

Наверняка вы замечали, что если быстро выпускать сжатый газ из балончика для заправки зажигалок, то он, испаряясь, охлаждает балончик, который даже в жаркую погоду может покрыться инеем. Справедливо и обратное: при сжатии газ нагревается. Памятуя об этом, вам будет совсем не сложно понять принцип действия теплового насоса, простейшая схема которого изображена на рисунке.

Компоненты теплового насоса

Простейший тепловой насос состоит из четырёх важнейших узлов:

  • испаритель;
  • конденсатор;
  • компрессор;
  • капилляр.

Компрессор сжимает фреон до жидкого состояния в конденсаторе, который при этом нагревается. Именно это тепло можно использовать в отоплении или в горячем водоснабжении, организовав простейший теплообмен между горячим конденсатором и более холодным помещением или бойлером.

Проходя через конденсатор, сжиженный фреон охлаждается, отдав тепло при теплообмене в радиаторы отопления или трубам теплого пола, и начинает конденсироваться. Проходя через капилляр в испаритель, фреон снова становится газообразным, охлаждая при этом испаритель (помните иней на балончике?).

Чтобы процесс не прекращался, нужно постоянно подводить тепло к испарителю, иначе фреон там просто перестанет испаряться, ведь температура испарителя при постоянной работе компрессора может сильно опуститься. Даже температуры минус тридцать, подводимой к испарителю, может быть достаточно для поддержания испарения, ведь температура испарения газов, используемых в тепловых насосах, гораздо ниже этого значения.

Допустим, температура испарения фреона равна минус шестьдесят градусов по Цельсию, а мы обдуваем испаритель морозным уличным воздухом, с температурой в минус тридцать — фреон, естественно, будет испаряться, забирая тепло даже у такого холодного воздуха. Таким образом и получается, что тепловой насос как бы перекачивает температуру из более холодной среды в более тёплую.

На что смотреть при покупке?

Такой эффект порождает множество мифов, которыми пользуются недобросовестные «продаваны», чтобы лучше продавать свою продукцию.

Самый распространённый миф — это утверждение, что КПД тепловых насосов превышает единицу. Понятно, что это утверждение — чистый бред. На самом деле КПД тепловых машин не может быть больше единицы, и даже у современных тепловых насосов он достаточно мал — меньше, чем у самого дешёвого масляного обогревателя. Люди просто часто путают КПД и так называемый COP (КОП).

КОП — это скорее экономический коэффициент, чем физический. Он показывает соотношение платной электроэнергии для перекачки бесплатного тепла с улицы к величине тепла, поступающего в помещение. Т.е. КОП 5 — это упрощенно означает, что для перекачки 5кВт халявного тепла с улицы в дом мы затратили 1кВт платной электроэнергии. Просто КОП не учитывает бесплатную тепловую энергию с улицы, а считает только ту, которую получили в результате и что для этого потратили.

Другой миф тоже связан с КОП: в паспортах тепловых насосов и на ценниках у продавцов гордо указывается одна-единственная величина КОП, которая просто вводит покупателей в заблуждение. Дело в том, что КОП тепловых насосов — величина переменная, а не постоянная. И многие недобросовестные дельцы об этом умалчивают, потому что указывают КОП для самых благоприятных условий, когда он чуть ли не максимальный. И это уже гораздо опаснее, чем заблуждения про сверхединичность КПД, т.к. чревато реальными последствиями.

Представьте, что вы уверовали, что будете тратить 1кВт электроэнергии на производство 5кВт тепла для того же отопления зимой, потому что в паспорте теплового насоса указано, что COP=5. Купили необходимой мощности тепловой насос, собрали систему отопления… А в самый неподходящий момент, когда морозы самые лютые, ваш отопитель жрёт не 1 к 5, а 1 к 2 в самом лучшем случае, или вообще не в состоянии выдать необходимое тепло для обогрева. И тут приходит понимание, что отапливаться конкретно этой системой можно лишь в межсезонье… Очень неприятная ситуация — отдать кучу денег и всё равно в морозы отапливаться дешёвыми масляными радиаторами, и только из-за того, что понадеялись на КОП и стабильную, неснижаемую выработку тепла.

А выработка тепла и КОП у тепловых насосов непостоянна. И связано это именно с непостоянным количеством тепла, подводимого к испарителю. К примеру, если вы берёте тепло для испарителя из воздуха, то с падением температуры на улице падает и КОП. При -30С на улице КОП воздушных тепловых насосов практически равен единице, т.е. даже простой ТЭН станет более экономичным в качестве отопителя, не говоря уж про амортизацию и повышенный износ дорогостоящего оборудования в таких условиях. И падение КОП — это ещё полбеды. Часто некоторые модели воздушных тепловых насосов просто не в состоянии выдавать необходимую для отопления мощность при значительном снижении температуры на улице.

Тепловые насосы, использующие для нагрева испарителя тепло земли или воды, тоже подвержены падению производительности и КОП, т.к. по ходу отопительного сезона они могут вымораживать ту среду, из которой качают тепло, но такие машины более стабильны.

Все больше и больше интернет пользователей интересуются альтернативами способами отопления: тепловыми насосами .

Для большинства это абсолютно новая и неизвестная технология, поэтому и возникают вопросы типа: «Что такое ?», «Как выглядит тепловой насос?», «Как работает тепловой насос?» и пр.

Здесь мы постараемся просто и доступно дать ответы на все эти и еще много других вопросов, связанных с тепловыми насосами.

Что такое Тепловой Насос?

Тепловой насос - устройство (другими словами «тепловой котел»), которое отбирает рассеянное тепло из окружающей среды (грунт, вода или воздух) и переносит его в отопительный контур вашего дома.

Благодаря солнечным лучам, которые непрерывно поступают в атмосферу и на поверхность земли происходит постоянная отдача тепла. Именно таким образом поверхность земли круглый год получает тепловую энергию.

Воздух частично поглощает тепло от энергии солнечных лучей. Остатки солнечной тепловой энергии почти полностью поглощается землей.

Кроме того, геотермальное тепло из недр земли постоянно обеспечивает температуру грунта +8°С (начиная с глубины 1,5-2 метра и ниже). Даже холодной зимой температура на глубине водоемов остается в диапазоне +4-6°С.

Именно это низкопотенциальное тепло грунта, воды и воздуха переносит тепловой насос из окружающей среды в отопительный контур частного дома, предварительно повысив температурный уровень теплоносителя до необходимых +35-80°С.

ВИДЕО: Как работает тепловой насос Грунт-Вода?

Что делает Тепловой Насос?

Тепловые насосы - тепловые машины, которые предназначены для производства тепла с использованием обратного термодинамического цикла. переносят тепловую энергию от источника с низкой температурой в систему отопления с более высокой температурой. В процессе работы теплового насоса происходят затраты энергии, не превышающие объем произведенной энергии.

В основе работы теплового насоса лежит обратный термодинамический цикл (обратный цикл Карно), состоящий из двух изотерм и двух адиабат, но в отличии от прямого термодинамического цикла (прямого цикла Карно) процесс протекает в обратном направлении: против часовой стрелки.

В обратном цикле Карно окружающая среда выступает в роли холодного источника тепла. При работе теплового насоса тепло внешней среды благодаря совершению работы передается потребителю, но с уже более высокой температурой.

Передать тепло от холодного тела (грунт, вода, воздух) возможно только при затрате работы (в случае с тепловым насосом - затраты электрической энергии на работу компрессора, циркуляционных насосов и пр.) или другого компенсационного процесса.

Еще тепловой насос можно назвать «холодильником наоборот», так как тепловой насос это та же холодильная машина, только в отличии холодильника тепловой насос забирает тепло снаружи и переносит его в помещение, то есть обогревает помещение (холодильник же охлаждает путем отбора тепла из холодильной камеры и выбрасывает его через конденсатор наружу).

Как работает Тепловой Насос?

Теперь поговори о том как работает тепловой насос. Для того, что понять принцип работы теплового насоса нам нужно разобраться в нескольких вещах.

1. Тепловой насос способен извлекать тепло даже при отрицательной температуре.

Большинство будущих домовладельцев не могут понять принцип работы (в принципе любого воздушного теплового насоса), так как не понимают каким образом может извлекаться тепло из воздуха при отрицательной температуре зимой. Вернемся к основам термодинамики и вспомни определение теплоты.

Теплота - форма движения материи, представляющая собой беспорядочное движение образующих тело частиц (атомов, молекул, электронов и др.).

Даже при температуре 0˚С (ноль градусов по Цельсию), когда замерзает вода, в воздухе все еще есть теплота. Ее значительно меньше чем, например при температуре +36˚С, но тем не менее и при нулевой и при отрицательной температуре происходит движение атомов, а значит и происходит выделение теплоты.

Движение молекул и атомов полностью прекращается при температуре -273˚С (минус двести семьдесят три градуса по Цельсию), что соответствует абсолютному нулю температуры (ноль градусов по шкале Кельвина). То есть и зимой при минусовой температуре в воздухе есть низкопотенциальное тепло, которое можно извлекать и переносить в дом.

2. Рабочая жидкость в тепловых насосах - хладагент (фреон).

Что такое холодильный агент? Хладагент - рабочее вещество в тепловом насосе, которое отбирает теплоту от охлаждаемого объекта при испарении и передает тепло рабочей среде (например, воде или воздуху) при конденсации.

Особенность хладагентов в том, что они способны закипать и при отрицательных и при относительно низких температурах. Кроме того хладагенты могут переходить из жидкого состояния в газообразное и наоборот. Именно во время перехода из жидкого состояния в газообразное (испарения) происходит поглощение теплоты, а во время перехода из газообразного в жидкое (конденсации) происходит передача теплоты (отделение тепла).

3. Работа теплового насоса возможна благодаря его четырем ключевым компонентам.

Для того, чтобы понять принцип работы теплового насоса его устройство можно разделить на 4 основные элементы:

  1. Компрессор , который сжимает хладагент для повышения его давления и температуры.
  2. Расширительный клапан - терморегулирующий вентиль, который резко понижает давление хладагента.
  3. Испаритель - теплообменник, в котором хладагент с низкой температурой поглощает тепло от окружающей среды.
  4. Конденсатор - теплообменник, в котором уже горячий хладагент после сжатия передает тепло в рабочую среду отопительного контура.

Именно эти четыре компонента позволяют холодильным машинам производить холод, а тепловым насосам - тепло. Для того, чтобы разобраться как работает каждый компонент теплового насоса и для чего он нужен предлагаем просмотреть видео о принципе работы грунтового теплового насоса.

ВИДЕО: Принцип работы теплового насоса Грунт-Вода

Принцип работы теплового насоса

Теперь попытаемся подробно описать каждый этап работы теплового насоса. Как уже говорилось ранее - в основе работы тепловых насосов лежит термодинамический цикл. Это значит, что работа теплового насоса состоит из нескольких этапов цикла, которые повторяются снова и снова в определенной последовательности.

Рабочий цикл теплового насоса можно разделить на четыре следующие этапы:

1. Поглощение тепла из окружающей среды (кипение хладагента).

В испаритель (теплообменник) поступает хладагент, который находиться в жидком состоянии и имеет низкое давление. Как мы уже знаем при низкой температуре хладагент способен закипать и испаряться. Процесс испарения необходим для того, чтобы вещество поглотило тепло.

Согласно второму закону термодинамики тепло передается от тела с высокой температурой к телу с более низкой температурой. Именно на этом этапе работы теплового насоса хладагент с низкой температурой проходя по теплообменнику отбирает тепло от теплоносителя (рассола), который ранее поднялся из скважин, где отобрал низкопотенциальное тепло грунта (в случаи с грунтовыми тепловым насосами Грунт-Вода).

Дело в том, что температура грунта под землей в любое время года составляет +7-8°С. При использовании устанавливаются вертикальные зонды, по которым циркулирует рассол (теплоноситель). Задача теплоносителя - нагреться до максимально возмножной температуры во время циркуляции по глубинным зондам.

Когда теплоноситель отобрал тепло из грунта, он поступает в теплообменник теплового насоса (испаритель) где «встречается» с хладагентом, который имеет более низкую температуру. И согласно второму закону термодинамики происходит теплообмен: тепло от более нагретого рассола передается менее нагретому хладагенту.

Здесь очень важный момент: поглощение тепла возможно во время испарения вещества и наоборот, отдача теплоты происходит при конденсации. Во время нагрева хладагента от теплоносителя он меняет свое фазовое состояние: хладагент переходит из жидкого состояния в газообразное (происходит процесс закипания хладагента, он испаряется).

Пройдя через испаритель хладагент находиться в газообразной фазе . Это уже не жидкость, но газ, который отобрал тепло у теплоносителя (рассола).

2. Сжатие хладагента компрессором.

На следующем этапе хладагент в газообразном состоянии попадает в компрессор. Здесь компрессор сжимает фреон, который за счет резкого увеличения давления нагревается до определенной температуры.

Аналогичным образом работает и компрессор обычного бытового холодильника. Единственное существенное отличие компрессора холодильника от компрессора теплового насоса - значительно меньшая производительность.

ВИДЕО: Как работает холодильник с компрессором

3. Передача тепла в систему отопления (конденсация).

После сжатия в компрессоре хладагент, который имеет высокую температуру поступает в конденсатор. В данном случае конденсатор - это тоже теплообменник, в котором во время конденсации происходит отдача теплоты от хладагента к рабочей среде отопительного контура (например воде в системе теплых полов, или радиаторов отопления).

В конденсаторе хладагент из газовой фазы снова переходит в жидкую. Этот процесс сопровождается выделением тепла, которое используется для системы отопления в доме и горячего водоснабжения (ГВС).

4. Понижение давления хладагента (расширение).

Теперь жидкий хладагент нужно подготовить к повторению рабочего цикла. Для этого хладагент проходит через узкое отверстие термо-регулирующего вентиля (расширительного клапана). После «продавливания» через узкое отверстие дросселя хладагент расширяется, вследствие чего падает его температура и давление.

Этот процесс сравним с распылением аэрозоля из балончика. После распыления балончик на короткое время становиться холоднее. То есть произошло резкое падение давления аэрозоля вследствие продавливания наружу, температура соответственно тоже падает.

Теперь хладагент снова находиться под таким давлением, при котором он способен закипеть и испаряться, что необходимо нам для поглощения тепла от теплоносителя.

Задача ТРВ (термо-регулирующий вентиль) - снизить давление фреона путем расширения его на выходе из узкого отверстия. Теперь фреон снова готов закипать и поглощать тепло.

Цикл снова повторяется до тех пор, пока система отопления и ГВС не получит от теплового насоса необходимый объем тепла .