» » Оптореле схемы включения. Термин: Выход дискретный, импульсный (на основе оптореле). Оптоэлектронные реле серии PVD

Оптореле схемы включения. Термин: Выход дискретный, импульсный (на основе оптореле). Оптоэлектронные реле серии PVD

Оптореле является электронным аналогом электромеханического реле. Дискретный выход оптореле является электронным аналогом нормально разомкнутого (SPST_NO) или нормально замкнутого (SPST_NС) одиночного контакта . Нормальное состояние в приведённых терминах следует понимать как исходное состояние не засвеченного оптореле. Для оптореле и соответствующего дискретного выхода всегда оговариваются максимально допустимые напряжения и токи исполнительной цепи . По сравнению с оптроном , оптореле, как правило, применяют для коммутации относительно сильнотоковых цепей управления и сигнализации.

На рисунке выше приведена выходная часть универсального оптореле, которое можно разным способом включить как в цепь постоянного, так и в цепь переменного тока. Входная часть оптореле – это светодиод, подключенный на управляющей стороне через светопроводящую гальваническую изоляцию .

АС-подключением оптореле обычно называют подключение для цепей переменного тока, как показано на рисунке ниже. Выходная цепь АС-оптореле, как правило, двухпроводная. Такое оптореле будет работать и в цепи постоянного тока, при этом, направление тока не имеет значения. На рисунках: U - это источник напряжения, а Rн - это сопротивление нагрузки.

Трёхпроводную выходную цепь оптореле можно включить и для цепи постоянного тока, как показано на рисунке ниже. Такое DC-подключение для постоянного тока более оптимально, по сравнению с AC-подключением, поскольку обеспечивает более низкое сопротивление замкнутого состояния выходной цепи оптрона.

Неправильное подключение DC-оптореле (если на рисунке выше поменять полюса источника напряжения U) будет соответствовать постоянно замкнутому состоянию выхода оптрона, поскольку откроется защитный диод в составе оптрона, не показанный на рисунке. Однако, всегда следует учитывать предельно допустимый ток такого режима.

Данный выход относится к пассивным , поскольку он сам не передаёт электрическую энергию в выходную цепь. Этот выход изменяет своё сопротивление (высокое-низкое), а значит, он требует включения его в цепь внешнего источника напряжения или тока , чтобы получить соответствующий бинарный сигнал управления . C другой стороны, оптореле, как электронный компонент, является активным , поскольку требует притока энергии для своей работы.

Типичное время срабатывания оптореле составляет единицы миллисекунд. В течение времени срабатывания оптореле происходит переходный процесс изменения выходного сопротивления оптореле, и в течение этого времени оптореле может рассеивать большую мощность при большом токе в цепи управления. Чтобы не перегреть оптореле, при управлении не следует допускать слишком малые временные интервалы переключения -- меньшие или сравнимые с временем срабатывания .

Компания International Rectifier — разработчик и производитель силовой электроники с 1947 года — выпускает огромную номенклатуру оптореле для всевозможных применений. Наиболее популярные из них можно условно разделить на следующие группы:

  • Быстродействующие (PVA, PVD, PVR);
  • Общего назначения (PVT);
  • Низковольтные средней мощности (PVG, PVN);
  • Высоковольтные мощные (PVX).

PVA33: быстродействующее реле
для коммутации сигналов

Реле переменного тока серии PVA33 — однополюсное, нормально разомкнутое. Предназначено для общих целей коммутации аналоговых сигналов.

Принцип действия устройства — следующий (рис. 1). Напряжение, подаваемое на вход реле, вызывает протекание тока через арсенидо-галлиевый светодиод (GaAlAs), что приводит к интенсивному свечению последнего. Световой поток попадает на интегральный фотогальванический генератор (ФГГ), который создает разницу потенциалов между затвором и истоком выходного ключа, тем самым переводя последний в проводящее состояние. В качестве силовых выходных ключей применены силовые МОП-транзисторы (HEXFET — запатентованная IR технология). Таким образом достигается полная гальваническая изоляция входных цепей от выходных.

Рис. 1.

Преимущества подобного решения по сравнению с обычными электромеханическими и герконовыми реле состоит в значительном повышении срока службы и быстродействия, уменьшении потерь мощности, минимизации размеров. Эти преимущества позволяют повысить качество разрабатываемой продукции для различных применений, например, в области мультиплексирования сигналов, автоматического испытательного оборудования, систем сбора данных и других.

Уровень напряжений, который способен коммутировать реле этой серии, лежит в диапазоне от 0 до 300 В (амплитудное значение) как переменного, так и постоянного тока. При этом минимальный уровень определяется (при постоянном токе) сопротивлением канала выходных транзисторов, которое составляет в среднем около 1 Ом (максимально до 20 Ом).

Динамические характеристики устройства определяются временем включения-выключения, составляющим порядка 100 мкс. Таким образом, гарантированная частота переключений реле может достигать 500 Гц и более.

Максимальная частота коммутируемого сигнала зависит в основном от частотных характеристик применяемых транзисторов и для МОП-ключей достигает сотен килогерц. Реле поставляются в 8-выводных DIP-корпусах и доступны в двух вариантах: для монтажа в отверстия и для поверхностного монтажа.

PVT312: телекоммуникационное реле
общего назначения

Фотоэлектрическое реле PVT312, однополюсное, нормально разомкнутое, может быть использовано как на постоянном, так и на переменном токе.

Это твердотельное реле специально разработано для применения в телекоммуникационных системах. Реле серии PVT312L (с суффиксом «L») используют активную схему ограничения тока, что позволяет им выдерживать всплески токов переходных процессов. PVT312 выпускается в 6-контактном DIP-корпусе.

Применение: телекоммуникационные ключи, пусковые механизмы, общие схемы переключения.

Схемы подключения могут быть трех типов (рис. 2). В первом случае два ключа микросхемы подключаются последовательно. Это позволяет за счет симметрии получившийся схемы коммутировать переменное напряжение. Такая схема называется включением типа «А». Тип «В» отличается тем, что используется только один из двух ключей микросхемы. Это позволяет коммутировать больший, однако, уже только постоянный ток. В третьем варианте (тип «С») ключи подключаются параллельно, тем самым увеличивая максимально возможное значение тока.


Рис. 2.

PVG612: низковольтное реле средней
мощности для переменного тока

Фотоэлектрические реле серии PVG612 — однополярные, нормально разомкнутые твердотельные реле. Компактные устройства серии PVG612 используются для изолированного переключения токов до 1 А с напряжением от 12 до 48 В переменного или постоянного тока.

Реле этого типа интересны тем, что они способны коммутировать относительно большие (для данного типа устройств) переменные токи, при этом сохраняя скорость работы, присущую решениям на МОП-транзисторах.

PVDZ172N: низковольтное средней
мощности для постоянного тока

Реле данной серии (рис. 3), в отличие от вышеописанных, предназначены для коммутации токов только постоянной полярности силой до 1,5 А и напряжением до 60 В. Например, эти реле находят применение в управлении осветительными приборами, двигателями, нагревательными элементами и т.д.

Рис. 3.

PVDZ172N выпускаются нормально разомкнутыми в однополюсном исполнении в 8-выводных DIP-корпусах.

Остальные возможные сферы применения: аудиоаппаратура, источники питания, компьютеры и периферийные устройства.

PVX6012: для больших нагрузок

Для больших низкочастотных нагрузок компания IR предлагает фотоэлектрическое реле PVX6012 (рис. 4) (однополюсное, нормально разомкнутое). В устройстве использован выходной ключ на базе биполярного транзистора с изолированным затвором (IGBT), что позволило получить малое падение напряжения в открытом состоянии и низкие токи потерь в закрытом при достаточно высокой скорости работы (7 мс — включение/1мс — выключение).

Рис. 4.

PVX6012 выпускается в 14-контактном DIP-корпусе, в котором, что интересно, используется всего четыре вывода — такое решение позволяет обеспечивать лучшее охлаждение устройства.

Основные сферы применения включают в себя: тестовое оборудование; промышленный контроль и автоматизацию; замену электромеханических реле; замену ртутных реле.

PVI: фотоизолятор для внешних
ключей большой мощности

Приборы этой серии не являются реле в собственном смысле слова. То есть не способны коммутировать потоки большой энергии с помощью малой. Они лишь обеспечивают гальваническую развязку входа от выхода, откуда и их название — фотоэлектрический изолятор (рис. 5).


Рис. 5.

Зачем же нужно такое «недореле»? Дело в том, что приборы серии PVI вырабатывают при получении входного сигнала электрически изолированное постоянное напряжение, которое достаточно для непосредственного управления затворами мощных MOSFET и IGBT. Фактически это оптореле, но без выходного ключа, в качестве которого разработчик может использовать подходящий для него по мощности отдельный транзистор.

PVI идеально подходят для применений, требующих высокотокового и/или высоковольтного переключения с оптической изоляцией между схемой управления и мощными схемами нагрузки.

К тому же изолятор серии PVI1050N содержит в себе два одновременно управляемых выхода, что дает возможность подключать их последовательно или параллельно для обеспечения более высокого значения тока управления (МОП) или более высокого значения напряжения управления (БТИЗ). Таким образом фактически можно получить выходной сигнал 10 В/5 мкА при последовательном включении и 5 В/10 мкА — при параллельном.

Два выхода PVI1050N могут применяться и по отдельности, при условии что разность потенциалов между выходами не превышает 1200 В (пост.) Изоляция вход-выход составляет 2500 В (действ.).

Приборы данной серии выпускаются в 8-выводных DIP-корпусах и находят применение в организации управления мощными нагрузками, преобразователях напряжения и т.п.

PVR13: двойное быстродействующее реле

Главной особенностью данной серии является наличие двух независимых реле в одном корпусе (рис. 6), каждое из которых может быть включено по типу «А», «В», или «С» (объяснение типов см. выше в описании PVT312). Максимальное напряжение коммутации 100 В (пост./перем.), ток 300 мА. В остальном данное реле по области применения и характеристикам близко к PVA33 и предназначено также для коммутации аналоговых сигналов средней частоты (до сотен килогерц).

Рис. 6.

Выпускаются в 16-контактных DIP-корпусах с выводами для монтажа в отверстия.

Основные характеристики оптоэлектронных реле IR представлены в таблице 1.

Таблица 1. Параметры оптоэлектронных реле компании IR

Характеристики PVA33 PVT312 PVG612N PVDZ172N PVX6012
Входные характеристики
Минимальный ток управления, мА 1…2 2 10 10 5
Макс. ток управления для нахождения в закрытом состоянии, мА 0,01 0,4 0,4 0,4 0,4
Диапазон управляющего тока (необходимо ограничение тока!), мА 5…25 2…25 5…25 5…25 5…25
Максимальное обратное напряжение, В 6 6 6 6 6
Выходные характеристики
Рабочий диапазон напряжения, В 0…300 0…250 0…60 0…60 (пост.) 280 (пер.)/400 (пост.)
Максимальный длительный ток нагрузки при 40°С, А 0,15 - - 1,5 1
А соед. (пост или перем) - 0,19 1 - -
В соед. (пост.) - 0,21 1,5 - -
С соед. (пост.) - 0,32 2 - -
Максимальный импульсный ток, А - - 2,4 4 не повтор. 5 А (1 сек)
Сопротивление в открытом состоянии, не более, Ом 24 - - 0,25 -
А соед. - 10 0,5 - -
В соед. - 5,5 0,25 - -
С соед. - 3 0,15 - -
Сопротивление в закрытом состоянии, не менее, МОм 10000 - 100 100 -
Время включения, не более. мс 0,1 3 2 2 7
Время выключения, не более, мс 0,11 0,5 0,5 0,5 1
Выходная емкость, не более, пФ 6 50 130 150 50
Скорость нарастания напряжения, не менее, В/мкс 1000 - - - -
Прочее
Электрическая прочность изоляции «вход-выход», В (СКВ) 4000 4000 4000 4000 3750
Сопротивление изоляции, вход-выход, 90 В пост.напр., Ом 1012 1012 1012 1012 1012
Емкость «вход-выход», пФ 1 1 1 1 1
Максимальная температура пайки контактов, °С 260 260 260 260 260
Рабочая температура, °С -40…85 -40…85 -40…85 -40…85 -40…85
Температура хранения,°С -40…100 -40…100
-40…100
-40…100 -40…100

Применение оптоэлектронных реле IR

Системы управления. В интерфейсах АСУ одной из актуальных проблем является организация связи между управляющей и коммутируемой цепью с обеспечением надежной гальванической развязки. То есть необходимо организовать передачу информации (например, сигнала исполнительному устройству) без электрического контакта. Одними из первых устройств подобного рода были электромеханические реле, в которых информация передавалась посредством магнитного поля. Однако наличие механических частей приводило к искрению контактов и низкому быстродействию таких систем.

Применение передачи сигнала через световой поток (оптоэлектронные реле) в интерфейсах АСУ (рис. 7) по сравнению с электромеханическими коммутаторами обеспечивает более высокие показатели по надежности, скорости переключения, долговечности, лучшие массогабаритные показатели; а преимущество в сравнении с электронными коммутаторами — отсутствие общей точки и взаимного влияния цепей при коммутации.

Рис. 7.

Наличие в системе управления гальванической развязки является одним из важных свойств коммутатора, т.к. позволяет создавать отдельные потоки управления, что, в свою очередь, дает возможность обеспечивать электрическую независимость информационной и исполнительной зон системы. Оптическая гальваническая развязка изолирует микроэлектронную управляющую аппаратуру от сильноточных и высоковольтных цепей периферийных исполняющих устройств, что приводит к повышению помехоустойчивости, срока службы и снижению цены такой аппаратуры.


Рис. 8.

Еще одной необходимой функцией в измерительном оборудовании является переключение режимов работы (диапазона измерений, коэффициента усиления, вида соединения и проч.), которое ранее выполнялось механически. Например, для измерения напряжения вольтметр подключается к цепи параллельно, в то время как для измерения тока необходимо последовательное соединение измерительного оборудования с цепью. В некоторых приборах для реализации такого переключения необходимо было использовать другой вход, механически переключив измерительную линию. Это довольно неудобно в случае частой смены измеряемого параметра, поэтому применение оптоэлектронных реле может эффективно решить данную проблему, значительно увеличив удобство пользования прибором.

С другой стороны, в системах сбора данных необходимость использования оптореле часто обусловлена большой вероятностью повреждения чувствительных входных цепей измерительной аппаратуры (аналогово-цифровых и частотных преобразователей). Такой нежелательный эффект может возникать, например, в связи с большой длиной проводников от первичного преобразователя до измерительного элемента, что способствует наведению электростатических помех. Кроме того, существенное влияние могут оказать как переходные процессы во время включения/выключения аппаратуры, так и ошибки в ее использовании, например, присутствие входного сигнала большой амплитуды при пропадании напряжения питания.

Все эти факторы приводят к необходимости использования гальванической развязки. Как пример можно привести реле серии PVT312L со встроенной активной схемой подавления пульсации токов, которая может быть эффективно использована в устройствах, сопряженных с длинными проводниками или работающих в сложных электромагнитных условиях (проводные системы экологического мониторинга предприятий, индустриальные измерительные преобразователи).

Телекоммуникации. Применение оптореле в области связи также является перспективным направлением. Есть несколько уникальных функций, для реализации которых можно эффективно использовать преимущества оптореле. Сюда относятся гальваническая развязка между модемом и телефонной линей для предотвращения повреждений, связанных с электростатическими (в т.ч. грозовыми) разрядами; реализации специфических функций телефонного оборудования (импульсный и тоновый набор, подключение и определение состояния линии) и т.п.

Заключение

В последние годы наблюдается тенденция к постоянному росту спроса на оптоэлектронные реле компании IR. Главными потребителями твердотельных реле являются промышленные гиганты нашей страны — приборостроительные и транспортные предприятия, крупные государственные корпорации Ростелеком, Росатом, РЖД. Производители ценят удобство и высокие технические характеристики реле компании IR для индустриального применения.

С другой стороны, постоянно растут требования к надежности радиоэлектронной аппаратуры со стороны военной и авиакосмической промышленности. Вопрос очень актуальный, который требует конкретных технических решений, которые позволят понизить отказы техники в процессе эксплуатации. Ни у кого из специалистов не вызывает сомнения, что твердотельные реле способны повысить надежность аппаратуры специального назначения.

Answer

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry"s standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book. It has survived not only five http://jquery2dotnet.com/ centuries, but also the leap into electronic typesetting, remaining essentially unchanged. It was popularised in the 1960s with the release of Letraset sheets containing Lorem Ipsum passages, and more recently with desktop publishing software like Aldus PageMaker including versions of Lorem Ipsum.

Устройство проверки оптореле своими руками


На днях мне понадобилось проверить оптореле в больших количествах. Собрав данный тестер твердотельных реле за пол часа, из минимума деталей, я сэкономил большое количество времени на проверке оптопар.

Многих начинающих радиолюбителей интересует как проверить оптопару. Такой вопрос может возникнуть от незнания устройства данной радиодетали. Если рассматривать поверхносто, то твердотельное оптоэлектронное реле состоит из входного элемента – светодиода и оптической развязки, которая переключает цепь.

Данная схема для проверки оптопары до элементарного проста. Она состоит из двух светодиодов и источника питания 3в – батарея CR2025. Красный светодиод выполняет роль ограничителя напряжения и, одновременно, является индикатором работы светодиода оптопары. Зеленый светодиод служит для индикации срабатывания выходного элемента оптопары. Т.е. если оба светодиода светятся, то проверка оптопары прошла успешна.

Процесс проверки оптореле сводится к установке его в соответствующей части панельке. В данном тестере твердотельных реле можно проверять оптопары в корпусе DIP-4, DIP-6 и сдвоенные реле в корпусе DIP-8.
Ниже привожу места положения оптореле в панельках тестера и свечение светодиодов соответствующие их работоспособности.

Оптореле 220 В/10 A Nf249

В последние годы на смену обычных электромагнитных реле приходят оптоэлектрон-ные твердотельные реле (оп-тореле). Оптореле представляют собой сильноточные ключи с гальванической развязкой между входами управления и нагрузкой и предназначены для коммутации нагрузки в цепях переменного и постоянного тока.

Преимущества оптореле очевидны. Это малый ток управления, отсутствие электромагнитных помех при коммутации нагрузки, высокое напряжение изоляции, широкий диапазон рабочих температур. Кроме того, малые габариты и большая надежность (наработка на отказ) делают их очень удобными в различных применениях.

Предлагаемый набор NF249 МАСТЕР КИТ позволит радиолюбителю собрать современное, простое и надежное оптическое коммутационное устройство: оптореле.

Набор также будет интересен и полезен при знакомстве с основами электроники и полу-

чении опыта сборки и настройки устройств.

ТЕХНИЧЕСКИЕ

ХАРАКТЕРИСТИКИ

ОПТОРЕЛЕ

Общий вид устройства представлен на рис. 1, схема электрическая принципиальная —на рис. 2.

ОПИСАНИЕ РАБОТЫ

ОПТОРЕЛЕ

Принципиальная электрическая схема приведена на

рис 2.

Принцип работы твердотельного реле состоит в следующем: входной сигнал (управляющий ток) через диод D1 подается на светодиод. Излучение, пройдя некоторое расстояние в корпусе реле (МОС3041), попадает на фотодиодную матрицу (фотоэлектрический генератор). Падающее излучение создает в фотодиодной матрице фото-

ЭДС. Наведенное напряжение подается на схему управления, которая в свою очередь формирует необходимый сигнал для управления выходным ключевым каскадом, обеспечивает защиту затвора выходного МОП-ключа, обеспечивает быстрое выключение ключа. Силовой ключ реализован на элементах С1, С2, R2, R3, и симисторе TR1. Резистор R1 ограничивает ток через свето-диод оптореле.

КОНСТРУКЦИЯ

Конструктивно устройство выполнено на печатной плате из фольгированного стеклотекстолита с размерами 52x38 мм. Конструкция предусматривает установку платы в корпус, для этого по краям платы имеются монтажные отверстия под винты 03 мм.

ОБЩИЕ ТРЕБОВАНИЯ К МОНТАЖУ И СБОРКЕ

НАБОРА

Все входящие в набор компоненты монтируются на печатной плате методом пайки.

Не используйте паяльник мощностью более 25 Вт.

Для предотвращения отслаивания токопроводящих дорожек и перегрева элементов, время пайки одного контакта не должно превышать 2-3 с.

ПОРЯДОК СБОРКИ

Проверьте комплектность набора согласно перечню элементов (табл. 1).

Таблица 1. Перечень элементов

Позиция

Наименование

Примечание

Кол-во

С1, С2

0,01 мкФ (500) B

Керамический конденсатор

500 Ом

Зеленый, черный, коричневый

R2, R3

470 Ом

Желтый, фиолетовый, коричневый

МОС3041

Оптореле

1N4001

Диод

ВТА12-600В

Симистор

Контакты штыревые

Припой с

каналом

канифоли

0,25 м

Радиатор

FT188

Печатная плата 52x38мм

Отформуйте выводы радиоэлементов.

Установите все детали согласно рис. 3 в следующей последовательности: сначала резисторы R1...R3, диод D1, колодку для оптореле, конденсаторы С1, С2, штыревые контакты, затем симистор TR1, предварительно установив его на радиатор.

Установите оптореле DA1 в колодку. При установке активных элементов (микросхема DA1, диод D1, симистор TR1) соблюдайте их полярность. Промойте плату от остатков флюса этиловым или изопро-пиловым спиртом. Подключите провода для управляющего напряжения и провода нагрузки.

ПОРЯДОК НАСТРОЙКИ

Правильно собранное устройство не требует настройки. Однако перед его использованием необходимо проделать несколько операций: проверьте правильность установки микросхемы DA1 и диода D1 и правильность подключения источника управляющего напряжения. Подключите нагрузку, например, лампу накаливания напряжением 220 В, рассчитанную на мощность 100 Вт, как показано на рис. 3.

При подаче управляющего напряжения (5.15 В) лампа накаливания должна засветиться.

ЗАКЛЮЧЕНИЕ

Чтобы сэкономить время и избавить вас от рутинной работы по поиску необходимых компонентов и изготовлению печатных плат, МАСТЕР КИТ предлагает набор NF249: «Оптореле». Набор состоит из заводской печатной платы, всех необходимых компонентов и подробной инструкции по сборке и эксплуатации.

Более подробно ознакомиться с ассортиментом нашей продукции можно с помощью каталога «МАСТЕР КИТ-2005» и на нашем сайте: www. masterkit.ru , где представлено много полезной информации по электронным наборам, блокам и модулям МАСТЕР КИТ, приведены адреса магазинов, где их можно купить. Наш ассортимент постоянно расширяется и дополняется новинками, созданными с использованием новейших достижений современной электроники.

Наборы МАСТЕР КИТ

можно купить в магазинах радиодеталей вашего города.





Оптореле или, по-другому, оптоэлектронные реле строятся на основе оптопар с полевыми транзисторами. Они более технологичные (а значит и более дешёвые) по сравнению с микросхемами «цифровых изоляторов», которые содержат внутри микроминиатюрные импульсные трансформаторы.

Типовые параметры твёрдотельных оптореле (англ. «Solid-state MOS relays»): ток управления 10…60 мА, время переключения 2…2000 МК с, ток коммутации

1.. .20 А, максимально допустимое напряжение в нагрузке 200…1000Вдля мощных силовых и на порядок меньше для маломощных сигнальных оптореле, ресурс работы 10 лет, наработка на отказ не менее 25000 часов.

Различают оптореле с коммутацией одн двухполярных сигналов. В переводе на понятный язык - для коммутации постоянного и переменного тока. На Рис. 2.117, а…е для примера показаны варианты внутренней «начинки» оптореле серии KP293 (по-старому 5П14). Параллельно выходным контактам оптореле стоят защитные диоды по аналогии с имеющимся в полевых транзисторах MOSFET.

Рис. 2.117. Внутреннее строение оптореле серии KP293:

а) реле постоянного тока с замыкающим контактом;

б) реле постоянного тока с размыкающим контактом;

в) реле переменного тока с замыкающим контактом;

г) реле переменного тока с размыкающим контактом;

д) реле постоянного тока с замыкающим и размыкающим контактами;

е) реле переменного тока с замыкающим и размыкающим контактами.

В некоторых оптореле последовательно со светодиодом встраивают интегральный токоограничивающий резистор. Это позволяет сэкономить место на плате и защитить светодиод в случае ошибочной подачи на вход высокого напряжения.

Светодиоды, входящие в состав оптореле, работают в инфракрасном диапазедлин волнстиповым падением напряжения 1.0…1.2 В. Не следует «жадничать» и уменьшать ток через светодиод ниже паспортного значения, поскольку могут ухудшиться выходные параметры и надёжность коммутации.

Оптореле, в отличие от оптосимистора, гарантированно переходит в противоположное состояние при снятии освещённости полупроводниковой зоны. Для оптореле без разницы, имеется или отсутствует напряжение в нагрузке. Кроме того, ввиду линейности ВАХ, появляется возможность без искажений коммутировать сигналы очень малой амплитуды, в отличие от оптосимисторов с их резкой пороговой характеристикой вблизи нуля.

При коммутации переменных сигналов большой амплитуды начинает сказываться нелинейная зависимость сопротивления канала полевых транзисторов оптореле от напряжения, т.е. возможны искажения формы и спектра сигнала.

Для повышения устойчивости работы оптореле в сети 220 В при атаке импульсных помех рекомендуется параллельно его замыкающим контактам ставить последовательную RC-цепь, состоящую из проволочного резистора сопротивлением

10.. .50 Ом и конденсатора ёмкостью 0.01…0.15 МК Ф с напряжением 600 В.

На Рис. 2.118, а…в приведены схемы подключения оптореле к MK.

а) VU1 - это оптореле фирмы Crydom. Ток управления 3…4 мА, изоляция выдерживает без пробоя напряжение 4 кВ, проходная ёмкость 8 пФ;

б) индикация включения светоизлучающей части оптореле VU1 (фирма Fairchild) производится светодиодом HL1. Мощность в нагрузке R H не более 50 Вт;

в) НИЗКИМ уровнем на выходе МК размыкаются контакты оптореле VU1, при этом прибор, подключаемый к вторичной обмотке трансформатора 77, переходит в дежурный режим с пониженным питанием, поскольку последовательно включается гасящее сопротивление R2.