» » Простая схема замены переменного резистора на две кнопки (КП301, КП304). Про резисторы для начинающих заниматься электроникой Как заменить обычный резистор на подстроечный

Простая схема замены переменного резистора на две кнопки (КП301, КП304). Про резисторы для начинающих заниматься электроникой Как заменить обычный резистор на подстроечный

Электрическая цепь невозможна без наличия в ней сопротивления, что подтверждается законом Ома. Именно поэтому резистор по праву считается самой распространенной радиодеталью. Такое положение вещей говорит о том, что знание тестирования таких элементов всегда может пригодиться при ремонте электротехники. Рассмотрим ключевые вопросы, связанные с тем, как проверить обычный резистор на исправность, пользуясь тестером или мультиметром.

Основные этапы тестирования

Несмотря на разнообразие резисторов, у обычных элементов этого класса линейная ВАХ, что существенно упрощает проверку, сводя ее к трем этапам:

  1. внешний осмотр;
  2. радиодеталь тестируется на обрыв;
  3. осуществляется проверка соответствия номиналу.

Если с первым и вторым пунктом все понятно, то с последним есть нюансы, а именно, необходимо узнать номинальное сопротивление. Имея принципиальную схему, сделать это не составит труда, но вся беда в том, что современная бытовая техника довольно редко комплектуется технической документацией. Выйти из создавшего положения можно, определив номинал по маркировке. Кратко расскажем как это сделать.

Виды маркировок

На компонентах, выпущенных во времена Советского Союза, было принято указывать номинал на корпусе детали (см. рис.1). Этот вариант не требовал расшифровки, но при повреждении целостности конструкции или выгорании краски могли возникнуть проблемы с распознаванием текста. В таких случаях всегда можно было обратиться к принципиальной схеме, которой комплектовалась вся бытовая техника.

Рисунок 1. Резистор «УЛИ», на корпусе виден номинал детали и допуск

Цветовое обозначение

Сейчас принята цветовая маркировка, представляющая собой от трех до шести колец разной окраски (см. рис. 2). Не надо видеть в этом происки врагов, поскольку данный способ позволяет установить номинал даже на сильно поврежденной детали. А это весомый фактор, учитывая, что современные бытовые электроприборы не комплектуются принципиальными схемами.


Рис. 2. Пример цветовой маркировки

Информацию по расшифровке данного обозначения на компонентах несложно найти в интернете, поэтому приводить ее в рамках этой статьи не имеет смысла. Есть также множество программ-калькуляторов (в том числе и онлайн), позволяющих получить необходимую информацию.

Маркировка SMD элементов

Компоненты навесного монтажа (например, smd резистор, диод, конденсатор и т.д.) стали маркировать цифрами, но ввиду малого размера деталей эту информацию требовалось зашифровать. Для сопротивлений, в большинстве случаев, принято обозначение из трех цифр, где первые две – это значение, а последняя – множитель (см. рис. 3).


Рис. 3. Пример расшифровки номинала SMD резистора

Внешний осмотр

Нарушение штатного режима работы вызывает перегрев детали, поэтому, в большинстве случаев, определить проблемный элемент можно по внешнему виду. Это может быть как изменение цвета корпуса, так и его полное или частичное разрушение. В таких случаях необходимо заменить сгоревший элемент.


Рисунок 4. Яркий пример того, как может сгореть резистор

Обратите внимание на фото сверху, компонент, отмеченный как «1», явно нуждается в замене, в то время как соседние детали «2» и «3» могут оказаться рабочими, но их требуется проверить.

Проверка на обрыв

Действия производятся в следующем порядке:

Если модель прибора, которым вы пользуетесь, отличается от того, что приведен на рисунке, ознакомьтесь с прилагающейся к мультиметру инструкцией.

  1. Касаемся щупами выводов проблемного элемента на плате. Если деталь «не звонится» (мультиметр покажет цифру 1, то есть бесконечно большое сопротивление), можно констатировать, что проверка показала обрыв в резисторе.

Обратим внимание, что данное тестирование можно проводить, не выпаивая элемент с платы, но это не гарантирует 100% результат, поскольку тестер может показать связь через другие компоненты схемы.

Проверка на номинал

Если деталь выпаяна, то этот этап позволит гарантированно показать ее работоспособность. Для тестирования нам необходимо знать номинал. Как определить его по маркировке, было написано выше.

Алгоритм наших действий следующий:


Что такое допуск, и насколько он важен?

Эта величина показывает возможное отклонение у данной серии от указанного номинала. В правильно рассчитанной схеме должен учитываться этот показатель, либо после сборки производится соответствующая наладка. Как вы понимаете, наши друзья из «Поднебесной» не утруждают себя этим, что положительно отражается на стоимости их товара.

Результат такой политики был показан на рисунке 4, деталь работает какое-то время, пока не наступает предел запаса ее прочности.

  1. Принимаем решение, сравнив показания мультметра с номиналом, если расхождение выходит за пределы погрешности, деталь однозначно нуждается в замене.

Как тестировать переменный резистор?

Принцип действий в данном случае не сильно отличается, распишем их на примере детали, изображенной на рисунке 7.

Рис. 7. Подстроечный резистор (внутренняя схема отмечена красным кругом)

Алгоритм следующий:

  1. Проводим измерение между ножками «1» и «3» (см. рис. 7) и сравниваем полученное значение с номиналом.
  2. Подключаем щупы к выводам «2» и любому из оставшихся («1» или «3», значения не имеет).
  3. Вращаем подстроечную ручку и наблюдаем за показаниями прибора, они должны меняться в диапазоне от 0 до величины, полученной в пункте 1.

Как проверить резистор мультиметром, не выпаивая на плате?

Такой вариант тестирования допустим только с низкоомными элементами. При номинале более 80-100 Ом, с большой вероятностью, на измерение будут влиять другие компоненты. Окончательно можно дать ответ, только внимательно изучив принципиальную схему.

Принципиальная схема простого электронного потенциометра, или как заменить переменный резистор с ручкой на две кнопки для регулировки в разных схемах и устройствах. В устройстве использованы полевые транзисторы КП304 или КП301.

Иногда бывает что нужно переделать какой-то регулятор на основе переменных резисторов с вращающимися ручками под цифровое кнопочное управление. Решение такой задачи может быть на основе микроконтроллера, с применением цифровых микросхемам и т.п.

В данной статье описывается простое решение, которое позволит заменить переменный резистор на небольшую схемку с двумя кнопками: "БОЛЬШЕ", "МЕНЬШЕ".

В журнале Радио за 1987 год №11 был описан несложный темброблок на микросхеме, особенностью его было электронное управление тембром при помощи кнопок.

Принципиальная схема

Схема построена на основе полевого транзистора и конденсатора. При помощи кнопок мы управляем степенью заряда конденсатора, напряжение на котором управляет полевым транзистором.

Рис. 1. Схема замены переменного резистора двумя кнопками.

Недостаток данной схемы регулировки - нет запоминания исходного состояния в момент включения, а также конденсатор по истечению времени все же теряет свой заряд.

Но тем не менее данное решение может отлично справиться, для примера, с задачей регулировки громкости в простом усилителе.

Детали и конструкция

Полевой транзистор КП304 может быть заменен на транзистор КП301. Внешний вид и цоколевка приведена на рисунке 1. Также очень важно установить в схему правильный конденсатор С12, он должен быть энергоемким, здесь отлично подойдут комбинированные конденсаторы.

Комбинированные конденсаторы общего назначения выполнены в стальных герметичных корпусах (К75-12, К75-24) или же в изоляционном эпоксидном корпусе (К75-47) с номинальной емкостью до 10 мкФ и номинальным напряжением от 400 Вольт до 63 кВольт.

Использование комбинированного диэлектрика в таких конденсаторах позволяет улучшить стабильность электрических параметров, расширить интервал рабочих температур, а также в некоторых случаях улучшить их характеристики по сравнению с бумажными конденсаторами.

В данной схеме лучше всего использовать импульсные энергоемкие комбинированные конденсаторы К75-11, К75-17, К75-40, с емкостю - от 0,22 до 1мкФ. Можно поэкспериментировать и с другими типами конденсаторов, но их эффективность в данной схеме, скорее всего, будет не лучшей.

Рис. 2. Внешний вид конденсаторов К75-11.

Монтаж желательно выполнить на двухстороннем фольгированном текстолите, одна сторона - для дорожек, а вторая - экран с подключением к общему.

Внимание! Паять полевой транзистор нужно очень аккуратно, он ботся статического напряжения, а также может выйти из строя в случае перегрева.

В результате получается такой себе электронный переменный резистор с кнопочным управлением . Схема очень простая и начинает работать сразу после включения.

При помощи подстроечного резистора R23 устанавливается нужный порог регулирования, а также начальное значение напряжения на выходе.

Часто во время внешнего осмотра можно обнаружить повреждение лакового или эмалевого покрытия. Резистор с обуглившейся поверхностью или с колечками на ней также неисправен. Небольшое потемнение лакового покрытия допустимого у таких резисторов следует проверить величину сопротивления. Допустимое отклонение от номинальной величины не должно превышать ±20 %. Отклонение величины сопротивления от номинала в сторону возрастания наблюдается при длительной эксплуатации у высокоомных резисторов (более 1 МОм).

В ряде случае обрыв токопроводящего элемента не вызывает никаких изменений внешнего вида резистора. Поэтому проверку резисторов на соответствие их величин номинальным значениям производят с помощью омметра. Перед измерением сопротивления резисторов в схеме следует выключить приемник и разрядить электролитические конденсаторы. При измерении необходимо обеспечить надежный контакт между выводами проверяемого резистора и зажимами прибора. Чтобы не шунтировать прибор, не следует касаться руками металлических частей щупов омметра. Величина измеренного сопротивления должна соответствовать тому номиналу, который обозначен на корпусе резистора с учетом допуска, соответствующего классу данного резистора и собственной погрешности измерительного прибора. Например, при измерении сопротивления резистора I класса точности с помощью прибора Ц-4324 суммарная погрешность во время измерения может достигать ±15 % (допуск резистора ±5 % плюс погрешность прибора ±10). Если резистор проверяется без. выпаивания его из схемы, то необходимо учитывать влияние шунтирующих цепей.

Наиболее часто встречающаяся неисправность у резисторов- пе регорание токопроводящего слоя, которое может быть вызвано прохождением через резистор недопустимо большого тока в результате различных замыканий в монтаже или пробоя конденсатора. Проволочные резисторы значительно реже выходят из строя. Основные неисправности их (обрыв или перегорание проволоки) обычно находят при помощи омметра.

Переменные резисторы (потенциометры) чаще всего имеют нарушения контакта подвижной щетки с токопроводящими элементами резистора. Если такой потенциометр используется в радиоприёмнике для регулировки громкости, то при повороте его оси в головке динамического громкоговорителя слышны трески. Встречаются также обрывы, износ или повреждение токопроводящего слоя.

Исправность потенциометров определяют омметром. Для этого подключают один из щупов омметра к среднему лепестку потенциометра, а второй щуп - к одному из крайних лепестков. Ось регулятора при каждом таком подключении очень медленно вращают. Если потенциометр исправен, то стрелка омметра перемещается вдоль шкалы плавно, без дрожания и рывков. Дрожание и рывки стрелки свидетельствуют о плохом контакте щетки с токопроводящим элементом. Если стрелка омметра вообще не отклоняется, это означает, что резистор неисправен. Такую проверку рекомендуется повторить, переключив второй щуп омметра ко второму крайнему лепестку резистора, чтобы убедиться в исправности и этого вывода. Неисправный потенциометр необходимо заменить новым или отремонтировать, если это возможно. Для этого вскрывают корпус потенциометра и тщательно промывают спиртом токопроводящий элемент и наносят тонкий слой машинного масла. Затем его собирают и вновь проверяют надежность контакта.

Резисторы, признанные непригодными, обычно заменяются исправными, величины которых подбирают так, чтобы они соответствовали принципиальной схеме приемника. При отсутствии резистора с соответствующим сопротивлением его можно заменить двумя (или несколькими) параллельно или последовательно соединенными. При параллельном соединении двух резисторов общее сопротивление цепи можно рассчитать по формуле

где Р - рассеиваемая на резисторе мощность, Вт; U - напряжение на резисторе,. В; R - величина сопротивления резистора; Ом.

Желательно взять резистор с несколько большей мощностью рассеяния (на 30,..40 %), чем полученная при расчете. При отсутствии резистора требуемой мощности можно подобрать несколько резисторов меньшей. мощности и соединить их между собой параллельно или последовательно с таким расчетом, чтобы их общее сопротивление оказалось равным заменяемому, а общая мощность не ниже требуемой.

При определении взаимозаменяемости различных типов постоянных и переменных резисторов для последних учитывают также характеристику изменения сопротивления от угла поворота его оси. Выбор характеристики изменения потенциометра определяют его схемным назначением. Например, чтобы получить равномерное регулирование громкости радиоприемника, следует выбирать потенциометры группы В (с показательной зависимостью изменения сопротивления), а в цепях регулировки тембра - группы А.

При замене вышедших из строя резисторов типа ВС можно рекомендовать резисторы типа МЛТ соответствующей мощности рассеяния, имеющие меньшие габариты и лучшую влагоустойчивость. Номинальная мощность резистора и класс его точности не имеют существенного значения в цепях управляющих сеток ламп и коллекторов транзисторов малой мощности.

Резистор служит для ограничения тока в электрической цепи, создания падений напряжения на отдельных её участках и пр. Применений очень много, всех и не перечесть.

Другое название резистора – сопротивление. По сути, это просто игра слов, так как в переводе с английского resistance – это сопротивление (электрическому току).

Когда речь заходит об электронике, то порой можно встретить фразы типа: "Замени сопротивление", "Два сопротивления сгорели". В зависимости от контекста под сопротивлением может подразумеваться именно электронная деталь.

На схемах резистор обозначается прямоугольником с двумя выводами. На зарубежных схемах его изображают чуть-чуть иначе. "Тело" резистора обозначают ломаной линией – своеобразная стилизация под первые образцы резисторов, конструкция которых представляла собой катушку, намотанную высокоомным проводом на изоляционном каркасе.

Рядом с условным обозначением указывается тип элемента (R ) и его порядковый номер в схеме (R1 ). Здесь же указано его номинальное сопротивление. Если указана только цифра или число, то это сопротивление в Омах. Иногда, рядом с числом пишут Ω – так, греческой заглавной буквой "Омега" обозначают омы. Ну, а, если так, – 10к , то этот резистор имеет сопротивление 10 кило Ом (10 кОм – 10 000 Ом). Про множители и приставки "кило", "мега" можете .

Не стоит забывать о переменных и подстроечных резисторах, которые всё реже, но ещё встречаются в современной электронике. Об их устройстве и параметрах я уже рассказывал на страницах сайта.

Основные параметры резисторов.

    Номинальное сопротивление.

    Это заводское значение сопротивления конкретного прибора, измеряется это значение в Омах (производные килоОм – 1000 Ом, мегаОм – 1000000 Ом). Диапазон сопротивлений простирается от долей Ома (0,01 – 0,1 Ом) до сотен и тысяч килоОм (100 кОм – 1МОм). Для каждой электронной цепи необходимы свои наборы номиналов сопротивлений. Поэтому разброс значений номинальных сопротивлений столь велик.

    Рассеиваемая мощность.

    Более подробно о мощности резистора я уже писал .

    При прохождении электрического тока через резистор происходит его нагрев. Если пропускать через него ток, превышающий заданное значение, то токопроводящее покрытие разогреется настолько, что резистор сгорает. Поэтому существует разделение резисторов по рассеиваемой мощности.

    На графическом обозначении резистора внутри прямоугольника мощность обозначается наклонной, вертикальной или горизонтальной чертой. На рисунке обозначено соответствие графического обозначения и мощности указанного на схеме резистора.

    К примеру, если через резистор потечёт ток 0,1А (100 mA), а его номинальное сопротивление 100 Ом, то необходим резистор мощностью не менее 1 Вт. Если вместо этого применить резистор на 0,5 Вт, то он вскоре выйдет из строя. Мощные резисторы применяются в сильноточных цепях, например, в блоках питания или сварочных инверторах.

    Если необходим резистор мощностью более 2 Вт (5 Вт и более), то внутри прямоугольника на условном графическом обозначении пишется римская цифра. Например, V – 5 Вт, Х – 10 Вт, XII – 12 Вт.

    Допуск.

    При изготовлении резисторов не удаётся добиться абсолютной точности номинального сопротивления. Если на резисторе указано 10 Ом, то его реальное сопротивление будет в районе 10 Ом, но никак не ровно 10. Оно может быть и 9,88 и 10,5 Ом. Чтобы как-то обозначить пределы погрешности в номинальном сопротивлении резисторов, их делят на группы и присваивают им допуск. Допуск задаётся в процентах.

    Если вы купили резистор на 100 Ом c допуском ±10%, то его реальное сопротивление может быть от 90 Ом до 110 Ом. Узнать точное сопротивление этого резистора можно лишь с помощью омметра или мультиметра, проведя соответствующее измерение. Но одно известно точно. Сопротивление этого резистора не будет меньше 90 или больше 110 Ом.

    Строгая точность номиналов сопротивлений в обычной аппаратуре важна не всегда. Так, например, в бытовой электронике допускается замена резисторов с допуском ±20% от того номинала, что требуется в схеме. Это выручает в тех случаях, когда необходимо заменить неисправный резистор (например, на 10 Ом). Если нет подходящего элемента с нужным номиналом, то можно поставить резистор с номинальным сопротивлением от 8 Ом (10-2 Ом) до 12 Ом (10+2 Ом). Считается так (10 Ом/100%) * 20% = 2 Ом. Допуск составляет -2 Ом в сторону уменьшения, +2 Ом в сторону увеличения.

    Существует аппаратура, где такой трюк не пройдёт – это прецизионная аппаратура. К ней относится медицинское оборудование, измерительные приборы, электронные узлы высокоточных систем, например, военных. В ответственной электронике используются высокоточные резисторы, допуск их составляет десятые и сотые доли процента (0,1-0,01%). Иногда такие резисторы можно встретить и в бытовой электронике.

    Стоит отметить, что в настоящее время в продаже можно встретить резисторы с допуском не более 10% (обычно 1%, 5% и реже 10%). Высокоточные резисторы имеют допуск в 0,25...0,05%.

    Температурный коэффициент сопротивления (ТКС).

    Под влиянием внешней температуры или собственного нагрева из-за протекающего тока, сопротивление резистора меняется. Иногда в тех пределах, которые нежелательны для работы схемы. Чтобы оценить изменение сопротивления из-за воздействия температуры, то есть термостабильность резистора, используется такой параметр, как ТКС (Температурный Коэффициент Сопротивления). За рубежом принято сокращение T.C.R.

    В маркировке резистора величина ТКС, как правило, не указывается. Для нас же необходимо знать, что чем меньше ТКС, тем лучше резистор, так как он обладает лучшей термостабильностью. Более подробно о таком параметре, как ТКС, я рассказывал .

    Первые три параметра основные, их надо знать!

    Перечислим их ещё раз:

      Номинальное сопротивление (маркируется как 100 Ом, 10кОм, 1МОм...)

      Рассеиваемая мощность (измеряется в Ваттах: 1 Вт, 0,5 Вт, 5 Вт...)

      Допуск (выражается в процентах: 5%, 10%, 0,1%, 20%).

    Так же стоит отметить конструктивное исполнение резисторов. Сейчас можно встретить как микроминиатюрные резисторы для поверхностного монтажа (SMD-резисторы), которые не имеют выводов, так и мощные, в керамических корпусах. Существуют и невозгораемые, разрывные и прочее. Перечислять можно очень долго, но основные параметры у них одинаковые: номинальное сопротивление , рассеиваемая мощность и допуск .

    В настоящее время номинальное сопротивление резисторов и их допуск маркируют цветными полосами на корпусе самого элемента. Как правило, такая маркировка применяется для маломощных резисторов, которые имеют небольшие габариты и мощность менее 2...3 ватт. Каждая фирма-изготовитель устанавливает свою систему маркировки, что вносит некоторую путаницу. Но в основном присутствует одна устоявшаяся система маркировки.

    Новичкам в электронике хотелось бы рассказать и о том, что кроме резисторов, цветовыми полосами маркируют и миниатюрные конденсаторы в цилиндрических корпусах. Иногда это вызывает путаницу, так как такие конденсаторы ложно принимают за резисторы.

    Таблица цветового кодирования.

    Рассчитывается сопротивление по цветным полосам так. Например, три первых полосы – красные, последняя четвёртая золотистого цвета. Тогда сопротивление резистора 2,2 кОм = 2200 Ом.

    Первые две цифры согласно красному цвету – 22, третья красная полоса, это множитель. Стало быть, по таблице множитель для красной полосы – 100. На множитель необходимо умножить число 22. Тогда, 22 * 100 = 2200 Ом. Золотистая полоса соответствует допуску в 5%. Значит, реальное сопротивление может быть в пределе от 2090 Ом (2,09 кОм) до 2310 Ом (2,31 кОм). Мощность рассеивания зависит от размеров и конструктивного исполнения корпуса.

    На практике широкое распространение имеют резисторы с допуском 5 и 10%. Поэтому за допуск отвечают полосы золотого и серебристого цвета. Понятно, что в таком случае, первая полоса находится с противоположной стороны элемента. С неё и нужно начинать считывание номинала.

    Но, как быть, если резистор имеет небольшой допуск, например 1 или 2% ? С какой стороны считывать номинал, если с обеих сторон присутствуют полосы красного и коричневого цветов?

    Этот случай предусмотрели и первую полосу размещают ближе к одному из краёв резистора. Это можно заметить на рисунке таблицы. Полоски, обозначающие допуск расположены дальше от края элемента.

    Конечно, бывают случаи, когда нет возможности считать цветовую маркировку резистора (забыли таблицу, стёрта/повреждена сама маркировка, некорректное нанесение полос и пр.).

    В таком случае, узнать точное сопротивление резистора можно только, если измерить его сопротивление мультиметром или омметром. В таком случае вы будете 100% знать его реальную величину. Также при сборке электронных устройств рекомендуется проверять резисторы мультиметром для того, чтобы отсеить возможный брак.