» » Делаем своими руками светодиодный фонарь. Самодельный фонарик на светодиоде cree Как сделать фонарь из светодиодов своими руками

Делаем своими руками светодиодный фонарь. Самодельный фонарик на светодиоде cree Как сделать фонарь из светодиодов своими руками

Практически любому рыболову, охотнику, садоводу-любителю довольно часто приходилось сталкиваться с необходимостью перемещения или выполнения различной работы в темное время суток. Компактные карманные фонарики не всегда могут в полной мере «прорезать темноту»… Представляю вашему вниманию это 100 Вт светодиодное чудо, которое можно изготовить своими руками .

Для начала порывшись в «закромах родины» нашел радиатор для охлаждения процессора. В идеале было бы неплохо закрепить светодиод на элементе Пельтье (для более эффективного охлаждения). После чего пошёл в местный строймаг и приобрел необходимы для самоделки детали.

Попутно возник вопрос относительно будущего корпуса фонаря… «Изобретать велосипед» смысла не было, поэтому решил взять готовый корпус от старого 6В фонаря

Шаг 1:

Первое, что нужно сделать – это собрать батарейный блок.

Шаг 2:

Устанавливаем светодиод и подключаем провода. Проводка монтировалась согласно схеме приведенной в видео.

Шаг 3: Подготавливаем корпус фонаря

Из-за того, что при работе источника света большой мощности, выделяется значительное количество тепла, необходимо вырезать в корпусе вентиляционные отверстия. Закроем их вентиляционными решётками.

Шаг 4: Тестовый запуск

Светодиоды сегодня встраивают куда угодно – в игрушки, зажигалки, бытовую технику и даже в канцелярские товары. Но самое полезное изобретение с ними – это конечно же фонарик. Большая часть из них автономны и выдают мощное свечение от небольших аккумуляторов. С ним не заблудишься в темноте, а при работе в слабоосвещенном помещении этот инструмент просто незаменим.
Небольшие экземпляры самых разных LED-фонариков можно купить практически в любом магазине. Стоят они недорого, но качество сборки может порой не радовать. То ли дело самодельные устройства, которые можно сделать на базе самых простых деталей. Это интересно, познавательно и оказывает развивающее действие на любителей мастерить.

Сегодня мы рассмотрим очередную самоделку - LED-фонарик, сделанную буквально из подручных деталей. Их стоимость не более нескольких долларов, а эффективность устройства выше чем у многих заводских моделей. Интересно? Тогда сделайте ее вместе с нами.

Принцип работы устройства

На сей раз светодиод подключен к аккумулятору только через сопротивление на 3 Ом. Поскольку в нем присутствует готовый источник энергии, ему не требуется накопительный тиристор и транзистор для распределения напряжения, как в случае с вечным фонариком Фарадея. Для зарядки аккумулятора применяется электронный модуль зарядки. Крохотный микромодуль обеспечивает защиту от перепадов напряжения и не допускает перезарядки аккумулятора. Заряжается устройство от USB разъема, а на самом модуле находится разъем микро USB.

Необходимые детали

  • Пластиковый шприц на 20 мл;
  • Линзы для светодиодного фонарика с корпусом;
  • Микро-кнопка выключатель;
  • Резистор на 3 Ом/0,25 Вт;
  • Отрезок алюминиевой пластины для радиатора;
  • Несколько медных проводов;
  • Суперклей, эпоксидная смола или жидкие гвозди.
Из инструментов понадобятся: паяльник с флюсом, клеевой пистолет, бормашина, зажигалка и малярный нож.

Собираем мощный светодиодный фонарик

Подготовка светодиода с линзами

Берем пластиковый колпак с линзами, и размечаем окружность радиатора. Он нужен для охлаждения светодиода. На алюминиевой пластине размечаем посадочные пазы, отверстия и вырезаем радиатор по разметке. Это можно сделать, например, при помощи бормашины.




Вытаскиваем на время увеличительные линзы, сейчас они не понадобятся. С тыльной стороны колпачка на суперклей приклеиваем пластину радиатора. Отверстия, пазы у колпачка и радиатора должны совпадать.



Контакты светодиода лудим и пропаиваем медной проводкой. Защищаем контакты термоусадочными кембриками, и прогреваем их зажигалкой. Вставляем с лицевой стороны колпака светодиод с проводкой.




Обработка корпуса фонарика из шприца

Отмыкаем поршень с рукояткой у шприца, они нам больше не понадобятся. Обрезаем подыгольный конус малярным ножом.
Счищаем полностью торец шприца, проделывая в нем отверстия для светодиодных контактов фонарика.
Крепим колпак фонаря к торцевой поверхности шприца на любой подходящий клей, например, на эпоксидную смолу или жидкие гвозди. Не забываем светодиодные контакты поместить во внутрь шприца.




Подключение микромодуля зарядки и аккумулятора

На литиевый аккумулятор крепим клеммы с контактами, и вставляем в корпус шприца. Подтягиваем медные контакты, чтобы зажать их корпусом аккумулятора.


У шприца остается всего несколько сантиметров свободного пространства, недостаточного для модуля зарядки. Поэтому его придется разделить на две части.
Проводим малярным ножом посередине платы модуля, и ломаем ее по линии среза. Используя двойной скотч соединяем обе половинки платы вместе.




Разомкнутые контакты модуля лудим, и пропаиваем медной проводкой.


Окончательная сборка фонарика

К плате модуля припаиваем резистор, и подключаем его к микро-кнопке, изолируя контакты термоусадкой.



Остальные три контакта припаиваем к модулю согласно схеме его подключения. Микро-кнопку подключаем в последнюю очередь, проверяя работу светодиода.

Светодиодные ленты сейчас применяются повсеместно и порой попадают в руки отрезки таких лент, ленты со сгоревшими местами светодиодами. А целых, рабочих светодиодов полным-полно и жалко выбрасывать такое добро, хочется где-то их применить. Так же попадаются различные аккумуляторные элементы. В частности мы рассмотрим элементы "сдохшей" Ni-Cd (никель-кадмиевой) батареи. Из всего этого хлама можно соорудить добротный самодельный фонарь, с большой вероятностью лучше заводского.

Светодиодная лента, как проверить

Как правило, светодиодные ленты рассчитаны на напряжение 12 вольт и состоят из множества независимых сегментов, соединенных параллельно в ленту. Это означает, что если выходит из строя какой-то элемент, работоспособность теряет только соответствующий элемент, остальные сегменты светодиодной ленты продолжают работать.

Собственно, нужно лишь подать питающее напряжение 12 вольт на специальные точки-контакты, которые имеются на каждом кусочке ленты. При этом, напряжение поступит на все сегменты ленты и станет ясно, где неработающие участки.

Каждый сегмент состоит из 3-х светодиодов и токоограничивающего резистора, включенных последовательно. Если разделить 12 вольт на 3 (количество светодиодов), то получим 4 вольта на светодиод. Это напряжение питания одного светодиода - 4 вольта. Подчеркну, так как всю цепь ограничивает резистор, то диоду вполне хватит напряжения 3,5 вольта. Зная это напряжение, мы можем проверить непосредственно любой светодиод на ленте по отдельности. Сделать это можно, коснувшись выводов светодиода щупами, подключенными к блоку питания с напряжением 3,5 вольта.

Для этих целей можно использовать лабораторный, регулируемый блок питания или зарядное устройство мобильного телефона. Зарядное устройство не рекомендуется подключать напрямую к светодиоду, ибо его напряжение около 5 вольт и теоретически светодиод может сгореть от большого тока. Чтобы этого не произошло, подключать зарядное устройство нужно через резистор 100 Ом, так мы ограничим ток.

Я сделал себе такое простое устройство - зарядка от мобильного с крокодилами вместо штекера. Очень удобна для включения сотовых без батареи, подзарядки батарей вместо "лягушки" и прочего. Для проверки светодиодов тоже сойдет.

Для светодиода важна полярность напряжения, если перепутать плюс с минусом, диод не загорится. Это не проблема, на ленте обычно указанна полярность каждого светодиода, если нет, то нужно пробовать и так и так. От перепутанных плюсов или минусов диод не испортится.


Лампа из светодиодов

Для фонарика необходимо изготовить светоизлучающий узел, лампу. Собственно, нужно светодиоды с ленты демонтировать и сгруппировать на свой вкус и цвет, по количеству, яркости и питающему напряжению.

Для снятия с ленты я использовал концелярский нож, акуратно срезая светодиоды прямо с кусочками токопроводящих жил ленты. Пробовал выпаивать, но что-то у меня плохо это удавалось. Наковыряв штук 30-40, я остановился, для фонарика и прочих поделок более чем достаточно.

Соединять светодиоды следует по простому правилу: 4 вольта на 1 или несколько запараллеленных диодов. То есть, если сборка будет запитываться от источника не более 5 вольт, сколько бы не было светодиодов, их нужно спаивать параллельно. Если же планируется питать сборку от 12 вольт - нужно сруппировать 3 последовательных сегмента с равным количеством диодов в каждом. Вот например сборка, которую я спаял из 24 светодиодов, разделив их на 3 последовательные секции по 8 штук. Рассчитана она на 12 вольт.

Каждая из трех секций этого элемента рассчитана на напряжение около 4-х вольт. Секции соединены последовательно, поэтому вся сборка питается от 12 вольт.

Кто-то пишет, что светодиоды не следует включать в параллель без индивидуального ограничивающего резистора. Может это и правильно, но я не ориентируюсь на такие мелочи. Для продолжительного срока службы, на мой взгляд, важнее подобрать токоограничительный резистор для всего элемента и подбирать его следует не измеряя ток, а щупая работающие светодиоды на предмет нагрева. Но об этом позже.

Я решил делать фонарь, работающий от 3-х никель-кадмиевых элементов из отработавшей батареи шуруповерта. Напряжение каждого элемента 1.2 вольта, следовательно 3 элемента, соединенных последовательно, дают 3.6 вольт. На это напряжение и будем ориентироваться.

Подключив 3 аккумуляторных элемента к 8-ми параллельным диодам, я измерил ток - около 180 миллиампер. Было решено делать светоизлучающий элемент из 8 светодиодов, как раз он удачно поместится в отражатель от галогеновой, точечной лампы.

В качестве основания я взял кусочек фольгированного стеклотекстолита примерно 1смХ1см, на него поместится 8 светодиодов в два ряда. В фольге прорезал 2 разделяющих полосы - средний контакт будет "-", два крайних будут "+".

Для пайки таких мелких деталей моего 15-ваттного паяльника многовато, точнее слишком большое жало. Можно сделать жало для пайки SMD-компонентов из куска электромонтажного провода 2.5мм. Чтобы новое жало держалось в большом отверстии нагревателя, можно согнуть проволоку пополам или добавить дополнительные кусочки проволоки в большое отверстие.


Основание залуживается припоем с канифолью и светодиоды впаиваются с соблюдением полярности. К средней полосе припаиваются катоды ("-"), а к крайним аноды ("+"). Припаиваются соединительные провода, крайние полосы соединяются перемычкой.

Нужно проверить спаянную конструкцию, подключив ее к источнику 3.5-4 вольта или через резистор к зарядному устройству телефона. Не забываем про полярность включения. Остается придумать отражатель фонаря, я взял отражатель от галогеновой лампы. Светоэлемент нужно надежно зафиксировать в отражателе, например клеем.

К сожалению, фото не может передать яркости свечения собранной конструкции, от себя скажу: слепит весьма не плохо!

Аккумулятор

Для питания фонаря я решил использовать аккумуляторные элементы из "сдохшей" батареи шуруповерта. Достал из корпуса все 10 элементов. Шуруповерт работал от этой батареи 5-10 минут и садился, по моей версии, для работы фонаря вполне могут подойти элементы этой батареи. Ведь для фонаря нужны токи, гораздо меньшие, чем для шуруповерта.

Я сразу отцепил три элемента от общей связки, они как раз будут давать напряжение 3.6 вольт.

Я замерил напряжение на каждом элементе по отдельности - на всех было около 1,1 В, только одна показывала 0. Видимо это неисправная банка, ее в мусорку. Остальные еще послужат. Для моей светодиодной сборки будет достаточно трех банок.

Проштудировав интернет, я вывел для себя важную информацию о никель-кадмиевых аккумуляторах: номинальное напряжение каждого элемента 1.2 вольт, заряжать банку следует до напряжения 1.4 вольт (напряжение на банке без нагрузки), разряжать следует не ниже 0.9 вольт - если составленно несколько элементов последовательно, то не ниже 1 вольта на элемент. Заряжать можно током десятой доли емкости (в моем случае 1.2А/ч=0.12А), но по факту можно и большим (шуруповерт заряжается не более часа, значит токи зарядки не менее 1.2А). Для тренировки/востановления полезно разрядить аккумулятор до 1 В какой-либо нагрузкой и зарядить заново, так несколько раз. Заодно оценить примерное время работы фонаря.

Итак, для трех элементов, соединенных последовательно, параметры таковы: напряжение зарядки 1.4X3=4.2 вольта, номинальное напряжение 1.2X3=3.6 вольт, ток заряда - какой даст зарядное мобильного со стабилизатором моего изготовления.

Единственный не ясный момент: как мерять минимальное напряжение на разряженных аккумуляторах. До подключения моего светильника на трех элементах было напряжение 3.5 вольт, при подключении - 2.8 вольт, напряжение быстро восстанавливается при отключении опять до 3.5 вольт. Я решил так: на нагрузке напряжение не должно падать ниже 2.7 вольт (0.9 В на элемент), без нагрузки желательно чтобы было 3 вольта (1 В на элемент). Однако, разряжать придется долго, чем дольше разряжаешь, тем стабильнее напряжение, перестает быстро падать на зажженых светодиодах!

Свои и без того разряженные аккумуляторы я разряжал несколько часов, иногда отключая лампу на несколько минут. В итоге получилось 2.71 В с подключенной лампой и 3.45 В без нагрузки, разряжать дальше не рискнул. Замечу, светодиоды продолжали светить, хоть и тускловато.

Зарядное устройство для никель-кадмиевых аккумуляторов

Теперь следует соорудить зарядное устройство для фонарика. Основное требование - напряжение на выходе не должно превышать 4.2 В.

Если планируется питать зарядное от какого-либо источника более 6 вольт - актуальна простая схема на КР142ЕН12А, это очень распространенная микросхема для регулируемого, стабилизированного питания. Зарубежный аналог LM317. Вот схема зарядного устройства на этой микросхеме:

Но эта схема не вписывалась в мою задумку - универсальность и максимальное удобство для зарядки. Ведь для этого устройства понадобится делать трансформатор с выпрямителем или использовать готовый блок питания. Я решил сделать возможность заряда аккумуляторов от зарядного устройства мобильника и USB порта компьютера. Для реализации потребуется схемка посложнее:

Полевой транзистор для этой схемы можно взять с неисправной материнской платы и другой компьютерной периферии, я срезал его со старой видеокарты. Таких транзисторов полно на материнке возле процессора и не только. Чтобы быть уверенным в своем выборе, нужно вбить номер транзистора в поиск и убедиться по даташитам, что это полевой с N-каналом.

В качестве стабилитрона я взял микросхему TL431, она встречается практически в каждом заряднике от мобилы или в других импульсных блоках питания. Выводы этой микросхемы нужно соединить как на рисунке:

Я собрал схему на кусочке текстолита, для подключения предусмотрел сразу гнездо USB. В дополнение к схеме впаял один светодиод возле гнезда, для индикации зарядки (что на USB-порт поступает напряжение).

Немного пояснений к схеме Так как зарядная схема будет все время присоединена к батарее, диод VD2 необходим, чтобы батарея не разряжалась через элементы стабилизатора. Подбором R4 нужно добиться на указанной контрольной точке напряжения 4.4 В, мерять нужно при отцепленной батарее, 0.2 вольта - это запас на просадку. Да и вообще, 4.4 В не выходит за пределы рекомендуемого напряжения для трех аккумуляторных банок.

Схему зарядного можно существенно упростить, однако заряжать придется только от источника 5 В (USB-порт компьютера удовлетворяет этому требовванию), если зарядное телефона выдает большее напряжение - использовать его нельзя. По упрощенной схеме, теоретически, аккумуляторы могут перезаряжаться, на практике же так заряжают аккумуляторы во многих заводских изделиях.

Ограничение тока светодиодов

Чтобы исключить перегрев светодиодов, а заодно уменьшить потребляемый ток от батареи, нужно подобрать токоограничительный резистор. Я подбирал его без каких-либо приборов, на ощупь оценивая нагрев и на глаз контролировал яркость свечения. Подбор нужно производить на заряженной батарее, следует найти оптимальное значение между нагревом и яркостью. У меня получился резистор 5.1 Ом.

Время работы

Я производил несколько зарядок-разрядок и получил следующие результаты: время зарядки - 7-8 часов, при непрерывно включенной лампе аккумулятор разряжается до 2.7 В примерно за 5 часов. Однако, при выключении на несколько минут, батарея немного восстанавливает заряд и может проработать еще полчаса, и так несколько раз. Это означает, что фонарик достаточно долго проработает, если светить не все время, а на практике так и выходит. Даже если пользоваться практически не выключая, на пару ночей должно хватить.

Конечно, ожидалось более продолжительное время работы без перерыва, но не стоит забывать, что аккумуляторы были взяты из "сдохшей" батареи шуруповерта.

Корпус для фонаря

Получившееся устройство нужно куда-то поместить, сделать какой-то удобный корпус.

Хотел расположить аккумуляторы со светодиодным фонарем в полипропиленовой водопроводной трубе, но банки не лезли даже в 32 мм трубу, ведь внутренний диаметр трубы намного меньше. В итоге остановился на соединительных муфтах для полипропилена 32 мм. Взял 4 соединительных муфты и 1 заглушку, склеил их вместе клеем.

Склеив все в одну конструкцию, получился весьма массивный фонарь, диаметром около 4 см. Если использовать какую-либо другую трубу, то можно существенно уменьшить размеры фонаря.

Обмотав все это дело изолентой для лучшего вида, мы получили вот такой фонарь:

Послесловие

В заключение хочется сказать несколько слов о получившемся обзоре. Не каждый USB порт компьютера может заряжать этот фонарь, все зависит от его нагрузочной способности, 0.5 А должно вполне хватить. Для сравнения: сотовые телефоны при подключении к некоторым компьютерам могут показывать зарядку, однако на самом деле никакой зарядки нет. Другими словами, если компьютер заряжает телефон, то и фонарь тоже будет заряжаться.

Схему на полевом транзисторе можно использовать для заряда от USB 1-го или 2-х аккумуляторных элементов, нужно лишь подстроить напряжение соответственно.

Для безопасности и возможности продолжать активную деятельность в темное время суток человек нуждается в искусственном освещении. Первобытные люди раздвигали темень, поджигая ветки деревьев, далее придумали факел и керосинку. И только после изобретения французским изобретателем Жорджом Лекланше в 1866 году прототипа современной батарейки, а в 1879 году Томсоном Эдисоном лампы накаливания, у Дэвида Майзелла появилась возможность запатентовать 1896 году первый электрический фонарь.

С тех пор в электрической схеме новых образцов фонарей ничего не изменялось, пока в 1923 году российский ученый Олег Владимирович Лосев не нашёл связь люминесценции в карбиде кремния и p-n-переходе, а в 1990 году ученым не удалось создать светодиод с большей светоотдачей, позволяющий заменить лампочку накаливания. Применение светодиодов вместо ламп накаливания, благодаря низкому энергопотреблению светодиодов, позволило многократно увеличить время работы фонарей при той же емкости батареек и аккумуляторов, повысить надежность фонариков и практически снять все ограничения на область их использования.

Светодиодный аккумуляторных фонарь, который Вы видите на фотоснимке попал мне в ремонт с жалобой, что купленный на днях китайский фонарик Lentel GL01 за $3, не светит, хотя индикатор заряда аккумулятора светится.


Внешний осмотр фонаря произвел положительное впечатление. Качественное литье корпуса, удобная ручка и включатель. Стержни вилки для подключения к бытовой сети для зарядки аккумулятора сделаны выдвижными, что исключает необходимость хранения сетевого шнура.

Внимание! При разборке и ремонте фонаря, если он подключен к сети следует соблюдать осторожность. Прикосновение незащищенным участком тела к неизолированным проводам и деталям может привести к поражению электрическим током.

Как разобрать светодиодный аккумуляторный фонарь Lentel GL01

Хотя фонарик подлежал гарантийному ремонту, но вспоминая свои хождения при при гарантийном ремонте отказавшего электрочайника (чайник был дорогим и в нем перегорел ТЭН , поэтому своими руками его отремонтировать не представлялось возможным), решил заняться ремонтом самостоятельно.


Разобрать фонарь оказалось легко. Достаточно повернуть на небольшой угол против часовой стрелки кольцо, фиксирующее защитное стекло и оттянуть его, затем отвинтить несколько саморезов. Оказалось кольцо фиксируется на корпусе с помощью байонетного соединения.


После снятия одной из половинок корпуса фонарика появился доступ ко всем его узлам. Слева на фотоснимке видна печатная плата со светодиодами , к которой прикреплен с помощью трех саморезов рефлектор (отражатель света). В центре расположен аккумулятор черного цвета с неизвестными параметрами, имеется только маркировка полярности выводов. Правее аккумулятора находится печатная плата зарядного устройства и индикации. Справа установлена сетевая вилка с выдвижными стержнями.


При внимательном рассмотрении светодиодов оказалось, что на излучающих поверхностях кристаллов всех светодиодов имелись черные пятна или точки. Стало ясно даже без проверки светодиодов мультиметром , что фонарик не светит по причине их перегорания.


Почерневшие области имелись также на кристаллах двух светодиодов, установленных в качестве подсветки на плате индикации зарядки аккумулятора. В светодиодных лампах и лентах обычно выходит из строя один светодиод, и работая как предохранитель, защищает остальные от перегорания. А в фонаре вышли из строя все девять светодиодов одновременно. Напряжение на аккумуляторе не могло увеличиться до величины, способной вывести светодиоды из строя. Для выяснения причины пришлось начертить электрическую принципиальную схему.

Поиск причины отказа фонаря

Электрическая схема фонаря состоит из двух функционально законченных частей. Часть схемы, расположенная левее переключателя SA1, выполняет функцию зарядного устройства. А часть схемы, изображенная справа от переключателя, обеспечивает свечение.


Работает зарядное устройство следующим образом. Напряжение от бытовой сети 220 В поступает на токоограничивающий конденсатор С1, далее на мостовой выпрямитель, собранный на диодах VD1-VD4. С выпрямителя напряжение подается на клеммы аккумулятора. Резистор R1 служит для разряда конденсатора после изъятия вилки фонарика из сети. Таким образом, исключается удар током от разряда конденсатора в случае случайного прикосновения рукой одновременно двух штырей вилки.

Светодиод HL1, включенный последовательно с токоограничивающим резистором R2 в противоположном направлении с правым верхним диодом моста, как, оказалось, светится всегда при вставленной вилке в сеть, даже если аккумулятор неисправен или отсоединен от схемы.

Переключатель режимов работы SA1 служит для подключения к аккумулятору отдельных групп светодиодов. Как видно из схемы получается, что если фонарь подключен к сети для зарядки и движок переключателя находится в положении 3 или 4, то напряжение с зарядного устройства аккумулятора попадает и на светодиоды.

Если человек включил фонарик и обнаружил, что он не работает, и, не зная, что движок выключателя обязательно необходимо установить в положение «выключено», о чем в инструкции по эксплуатации фонаря ничего не сказано, подключит фонарь к сети на зарядку, то за счет броска напряжения на выходе зарядного устройства на светодиоды попадет напряжение, значительно превышающее расчетное. Через светодиоды потечет ток, превышающий допустимый и они перегорят. При старении кислотного аккумулятора за счет сульфитации свинцовых пластин напряжение заряда аккумулятора возрастает, что тоже приводит к перегоранию светодиодов.

Еще одно схемное решение, которое удивило, это параллельное включение семи светодиодов, что недопустимо, так как вольтамперные характеристики даже светодиодов одного типа отличаются и поэтому проходящий ток через светодиоды тоже будет не одинаковым. По этой причине при выборе номинала резистора R4 из расчета протекания через светодиоды максимально допустимого тока, один из них может перегружаться и выйти из строя, а это приведет к перегрузке по току параллельно включенных светодиодов, и они тоже перегорят.

Переделка (модернизация) электрической схемы фонаря

Стало очевидным, что поломка фонаря связана с ошибками, допущенными разработчиками его электрической принципиальной схемы. Чтобы отремонтировать фонарь и исключить его повторную поломку необходимо его переделать, заменив светодиоды и внести незначительные изменения в электрическую схему.


Для того чтобы индикатор заряда аккумулятора действительно сигнализировал о его зарядке, необходимо светодиод HL1 включить последовательно с аккумулятором. Для свечения светодиода необходим ток несколько миллиампер, а выдаваемый ток зарядным устройством должен составлять около 100 мА.

Для обеспечения этих условий достаточно отсоединить HL1-R2 цепочку от схемы в местах, указанных красными крестиками и параллельно с ней установить дополнительный резистор Rd номиналом 47 Ом мощностью не менее 0,5 Вт. Ток заряда, протекая через Rd будет создавать на нем падение напряжения около 3 В, которое обеспечить необходимый ток для свечения индикатора HL1. Заодно точку соединения HL1 и Rd необходимо подключить к выводу 1 переключателя SA1. Таким простым способом будет исключена возможность подачи напряжения с зарядного устройства на светодиоды EL1-EL10 во время заряда аккумулятора.

Для выравнивания величины токов, протекающих через светодиоды EL3-EL10, необходимо исключить из схемы резистор R4 и последовательно с каждым светодиодом включить отдельный резистор номиналом 47-56 Ом.

Электрической схема после доработки

Внесенные в схему незначительные изменения повысили информативность индикатора заряда недорогого китайского светодиодного фонаря и многократно повысили его надежность. Надеюсь, что производители светодиодных фонарей после прочтения этой статьи внесут изменения в электрические схемы своих изделий.


После модернизации электрическая принципиальная схема приняла вид, как на чертеже выше. Если необходимо освещать фонариком продолжительное время и не требуется большой яркости его свечения, то можно дополнительно установить токоограничивающий резистор R5, благодаря которому время работы фонарика без подзарядки увеличится в два раза.

Ремонт светодиодного аккумуляторного фонаря

После разборки в первую очередь нужно восстановить работоспособность фонаря, а потом уже заниматься модернизацией.


Проверка светодиодов мультиметром подтвердила их неисправность. Поэтому все светодиоды пришлось выпаять и освободить от припоя отверстия для установки новых диодов.


Судя по внешнему виду, на плате были установлены ламповые светодиоды из серии HL-508H диаметром 5 мм. В наличии имелись светодиоды типа HK5H4U от линейной светодиодной лампы с близкими техническими характеристиками. Они и пригодились для ремонта фонаря. При запайке светодиодов на плату нужно не забывать соблюдать полярность, анод должен быть соединен с плюсовым выводом аккумулятора или батарейки.

После замены светодиодов печатная плата была подключена к схеме. Яркость свечения некоторых светодиодов из-за общего токоограничивающего резистора несколько отличалась от других. Для устранения этого недостатка необходимо удалить резистор R4 и заменить его семью резисторами, включив последовательно с каждым светодиодом.

Для выбора резистора, обеспечивающего оптимальный режим работы светодиода, была измерена зависимость величины тока, протекающего через светодиод, от величины последовательно включенного сопротивления при напряжении 3,6 В, равному напряжению аккумуляторной батареи фонаря.

Исходя из условий применения фонаря (в случае перебоев подачи в квартиру электроэнергии) большой яркости и дальности освещения не требовалось, поэтому резистор был выбран номиналом 56 Ом. С таким токоограничивающим резистором светодиод будет работать в легком режиме, и потребление электроэнергии будет экономным. Если от фонаря требуется выжать максимальную яркость, то следует применить резистор, как видно из таблицы, номиналом 33 Ом и сделать два режима работы фонарика, включив еще один общий токоограничивающий резистор (на схеме R5) номиналом 5,6 Ом.


Чтобы включить последовательно с каждым светодиодом резистор, необходимо предварительно подготовить печатную плату. Для этого на ней нужно перерезать по одной любой токоведущей дорожке, подходящей к каждому светодиоду и сделать дополнительные контактные площадки. Токоведущие дорожки на плате защищены слоем лака, который необходимо соскоблить лезвием ножа до меди, как на фотоснимке. Затем оголенные контактные площадки залудить припоем.

Подготавливать печатную плату для монтажа резисторов и припаивать их лучше и удобнее, если плату закрепить на штатном рефлекторе. В этом случае поверхность линз светодиодов не будет царапаться, и удобнее будет работать.

Подключение диодной платы после ремонта и модернизации к аккумулятору фонаря показало достаточную для освещения и одинаковую яркость свечения всех светодиодов.

Не успел отремонтировать предыдущий фонарь, как в ремонт попал второй, с такой же неисправностью. На корпусе фонарика информации о производителе и технических характеристиках не нашел, но судя по почерку изготовления и причине поломки, производитель тот же, китайский Lentel.

По дате на корпусе фонарика и на аккумуляторе удалось установить, что фонарю уже четыре года и со слов его хозяина фонарь работал безотказно. Очевидно, что прослужил фонарик долго благодаря предупреждающей надписи «Не включать во время зарядки!» на откидной крышке, закрывающей отсек, в котором спрятана вилка для подключения фонаря к электросети для зарядки аккумулятора.


В этой модели фонаря светодиоды включены в схему по правилам, последовательно с каждым установлен резистор номиналом 33 Ом. Величину резистора легко узнать по цветовой маркировке с помощью онлайн калькулятора . Проверка мультиметром показала, что все светодиоды неисправны, резисторы тоже оказались в обрыве.

Анализ причины отказа светодиодов показал, что за счет сульфатации пластин кислотного аккумулятора его внутреннее сопротивление увеличилось и как следствие, напряжение его зарядки возросло в несколько раз. Во время зарядки фонарик был включен, ток через светодиоды и резисторы превысил предельный, что и привело к выходу их из строя. Пришлось заменить не только светодиоды, но и все резисторы. Исходя из выше оговоренных условиях эксплуатации фонаря были для замены выбраны резисторы номиналом 47 Ом. Величину резистора для любого типа светодиода можно рассчитать с помощью онлайн калькулятора .

Переделка схемы индикации режима зарядки аккумулятора

Фонарь отремонтирован, и можно приступать к внесению изменений в схему индикации зарядки аккумулятора. Для этого необходимо перерезать дорожку на печатной плате зарядного устройства и индикации таким образом, чтобы цепочку HL1-R2 со стороны светодиода отсоединить от схемы.

Свинцово-кислотный AGM аккумулятор был доведен до глубокого разряда, и попытка зарядить его штатным зарядным устройством не привела к успеху. Пришлось аккумулятор заряжать с помощью стационарного блока питания с функцией ограничения тока нагрузки. На аккумулятор было подано напряжение 30 В, при этом он в первый момент времени потреблял ток всего несколько мА. Со временем ток начал возрастать и через несколько часов увеличился до 100 мА. После полной зарядки аккумулятор был установлен в фонарь.

Зарядка глубоко разряженных свинцово-кислотный AGM аккумуляторов в результате долгого хранения повышенным напряжением позволяет восстановить их работоспособность. Способ проверен мною на AGM аккумуляторах не один десяток раз. Новые аккумуляторы, нежелающие заряжаться от стандартных зарядных устройств, при зарядке от постоянного источника при напряжении 30 В восстанавливаются практически до первоначальной емкости.

Аккумулятор был несколько раз разряжен включением фонарика в рабочий режим и заряжен с помощью штатного зарядного устройства. Измеренный ток заряда составил 123 мА, при напряжении на выводах аккумулятора 6,9 В. К сожалению аккумулятор был изношен и его хватало для работы фонаря в течение 2 часов. То есть емкость аккумулятора составляла около 0,2 А×часа и для продолжительной работы фонаря необходима его замена.


HL1-R2 цепочка на печатной плате была удачно размещена, и понадобилось под углом перерезать всего одну токоведущую дорожку, как на фотоснимке. Ширина реза должна быть не менее 1 мм. Расчет номинала резистора и проверка на практике показала, что для стабильной работы индикатора зарядки аккумулятора необходим резистор номиналом 47 Ом мощностью не менее 0,5 Вт.

На фотоснимке представлена печатная плата с запаянным токоограничивающим резистором. После такой доработки индикатор заряда аккумулятора светится только в случае, если действительно происходит заряд аккумулятора.

Модернизация переключателя режимов работы

Для завершения работы по ремонту и модернизации фонарей необходимо выполнить перепайку проводов на выводах переключателя.

В моделях ремонтируемых фонарей для включения применен четырех позиционный переключатель движкового типа. Средний вывод на приведенной фотографии является общим. При положении движка переключателя в крайнем левом положении общий вывод подключается к левому выводу переключателя. При перемещении движка переключателя из крайнего левого положения на одну позицию вправо, общий его вывод подключается ко второму выводу и при дальнейшем перемещении движка последовательно к 4 и 5 выводам.

К среднему общему выводу (смотри фотографию выше) нужно припаять провод, идущий от положительного вывода аккумулятора. Таким образом, появится возможность подключать аккумулятор к зарядному устройству или светодиодам. К первому выводу можно припаять провод, идущий от основной платы со светодиодами, ко второму можно припаять токоограничивающий резистор R5 величиной 5,6 Ом для возможности переключения фонарика в энергосберегающий режим работы. К крайнему правому выводу припаять проводник, идущий от зарядного устройства. Таким образом будет исключена возможность включить фонарь во время зарядки аккумулятора.

Ремонт и модернизация
светодиодного аккумуляторного фонаря-прожектора «Фотон PB-0303»

Попал мне в ремонт еще один экземпляр из ряда светодиодных фонарей китайского производства под названием Светодиодный фонарь-прожектор «Фотон PB-0303». Фонарь при нажатии на кнопку включения не реагировал, попытка зарядить аккумулятор фонаря с помощью зарядного устройства к успеху не привела.


Фонарь мощный, дорогой, стоит около $20. По заявлению производителя световой поток фонаря достигает 200 метров, корпус выполнен из ударопрочного ABS-пластика, в комплекте имеется отдельное зарядное устройство и ремень для переноса на плече.


Светодиодный фонарь Фотон обладает хорошей ремонтопригодностью. Для получения доступа к электрической схеме достаточно открутить пластмассовое кольцо, удерживающее защитное стекло, вращая кольцо против часовой стрелки, если смотреть на светодиоды.


При ремонте любых электроприборов поиск неисправности всегда начинается с источника питания. Поэтому первым делом было измерено с помощью мультиметра, включенного в режим , напряжение на выводах кислотного аккумулятора. Оно составил 2,3 В, вместо 4,4 В положенных. Аккумулятор был полностью разряжен.

При подключении зарядного устройства напряжение на клеммах аккумулятора не изменялось, стало очевидным, что зарядное устройство не работает. Фонариком пользовались, пока аккумулятор полностью не разрядился, а затем он продолжительное время не эксплуатировался, что и привело к глубокой разрядке аккумулятора.


Осталось проверить исправность светодиодов и остальных элементов. Для этого был снять отражатель, для чего были откручены шесть саморезов. На печатной плате находилось всего три светодиода, ЧИП (микросхема) в виде капельки, транзистор и диод.


От платы и аккумулятора пять проводов уходило в ручку. Для того, чтобы разобраться в их подключении понадобилось ее разобрать. Для этого нужно крестовой отверткой открутить внутри фонаря два винта, которые были расположены рядом с отверстием, в которые уходили провода.


Для отсоединения ручки фонаря от его корпуса ее необходимо сдвинуть в сторону от винтов крепления. Делать это нужно аккуратно, чтобы не оторвать от платы провода.


Как оказалось в ручке небыло радиоэлектронных элементов. Два белых провода были припаяны к выводам кнопки включения/выключения фонаря, а остальные к разъему для подключения зарядного устройства. К 1 выводу разъема (нумерация условная) был припаян провод красного цвета, который вторым концом был припаян к плюсовому входу печатной платы. Ко второму контакту был припаян сине-белый проводник, который вторым концом был припаян к минусовой площадке печатной платы. К 3 выводу был припаян зеленый провод, второй конец которого был припаян к минусовому выводу аккумулятора.

Электрическая принципиальная схема

Разобравшись с проводами, спрятанными в ручке можно начертить электрическую принципиальную схему фонаря Фотон.


С отрицательного вывода аккумулятора GB1 напряжение подается на вывод 3 разъема Х1 и далее с его вывода 2 через сине-белый проводник поступает на печатную плату.

Разъем Х1 устроен таким образом, что когда штекер зарядного устройства в него не вставлен, то выводы 2 и 3 соединяются между собой. Когда штекер вставляется, то выводы 2 и 3 разъединяются. Таким образом, обеспечивается автоматическое отключение электронной части схемы от зарядного устройства, исключающей возможность случайного включения фонаря во время зарядки аккумулятора.

С положительного вывода аккумулятора GB1 напряжение подается на D1 (микросхема-чип) и эмиттер биполярного транзистора типа S8550. ЧИП выполняет только функцию триггера, позволяющего кнопкой без фиксации включать или выключать свечение светодиодов EL (⌀8 мм, цвет свечения – белый, мощность 0,5 Вт, ток потребления 100 мА, падение напряжения 3 В.). При первом нажатии на кнопку S1 с микросхемы D1 на базу транзистора Q1 подается положительное напряжение, он открывается и на светодиоды EL1-EL3 поступает питающее напряжение, фонарь включается. При повторном нажатии на кнопку S1, транзистор закрывается и фонарь выключается.

С технической точки зрения такое схемное решение безграмотно, так как повышает стоимость фонаря, снижает его надежность, и в дополнение за счет падения напряжения на переходе транзистора Q1 теряется до 20% емкости аккумулятора. Такое схемное решение оправдано при наличии возможности регулировки яркости светового луча. В данной модели вместо кнопки достаточно было поставить механический выключатель.

Вызвало удивление, что в схеме светодиоды EL1-EL3 подключены параллельно к аккумулятору как лампочки накаливания, без токоограничивающих элементов. В результате при включении через светодиоды проходит ток, величина которого ограничена только внутренним сопротивлением аккумулятора и при его полном заряде ток может превысить допустимый для светодиодов, что приведет выходу их из строя.

Проверка работоспособности электрической схемы

Для проверки исправности микросхемы, транзистора и светодиодов от внешнего источника питания с функцией ограничения тока было подано с соблюдением полярности напряжение постоянного тока 4,4 В непосредственно на выводы питания печатной платы. Величина ограничения тока была выставлена 0,5 А.

После нажатия кнопки включения светодиоды засветили. После повторного нажатия – погасли. Светодиоды и микросхема с транзистором оказались исправными. Осталось разобраться с аккумулятором и зарядным устройством.

Восстановление кислотного аккумулятора

Так как кислотный аккумулятор емкостью 1,7 А был полностью разряжен, а штатное зарядное устройство было неисправно то решил его зарядить от стационарного блока питания. При подключении аккумулятора для зарядки к блоку питания с установленным напряжением 9 В, ток заряда составил менее 1 мА. Напряжение было увеличено, до 30 В - ток возрос до 5 мА, и через час под таким напряжением составил уже 44 мА. Далее напряжение было снижено до 12 В, ток упал до 7 мА. После 12 часов заряда аккумулятора при напряжении 12 В ток поднялся до 100 мА, таким током и заряжался аккумулятор в течении 15 часов.

Температура корпуса аккумулятора была в пределах нормы, что свидетельствовало о том, что ток зарядки идет не на выделение тепла, а на накопление энергии. После заряда аккумулятора и доработки схемы, о которой речь пойдет ниже, были проведены испытания. Фонарь с восстановленным аккумулятором просветил беспрерывно 16 часов, после чего начала падать яркость луча и поэтому он был выключен.

Описанным выше способом мне приходилось неоднократно восстанавливать работоспособность глубоко разряженных малогабаритных кислотных аккумуляторов. Как показала практика, восстановлению подлежат только исправные аккумуляторы, о которых на некоторое время забыли. Кислотные аккумуляторы, которые выработали свой ресурс, восстановлению не подлежат.

Ремонт зарядного устройства

Измерение величины напряжения мультиметром на контактах выходного разъема зарядного устройства показало его отсутствие.

Судя по стикеру, наклеенному на корпус адаптера, он представлял собой блок питания, выдающий нестабилизированное постоянное напряжение величиной 12 В с максимальным током нагрузки 0,5 А. В электрической схеме небыло элементов, ограничивающих величину тока зарядки, поэтому возник вопрос, а почему в качестве зарядного устройства использовался обыкновенный блок питания?

Когда адаптер был вскрыт, то появился характерный запах горелой электропроводки, что свидетельствовало о том, что обмотка трансформатора сгорела.

Прозвонка первичной обмотки трансформатора показала, что она в обрыве. После разрезания первого слоя ленты, изолирующего первичную обмотку трансформатора, был обнаружен термопредохранитель, рассчитанный на температуру срабатывания 130°С. Проверка показала, что как первичная обмотка, так и термопредохранитель неисправны.

Ремонт адаптера был экономически не целесообразен, так как необходимо перемотать первичную обмотку трансформатора и установить новый термопредохранитель. Заменил его аналогичным, который был под рукой, на напряжение постоянного тока 9 В. Гибкий шнур с разъемом пришлось перепаять от сгоревшего адаптера.


На фотографии представлен чертеж электрической схемы сгоревшего блока питания (адаптера) светодиодного фонаря «Фотон». Адаптер для замены был собран по такой же схеме, только с выходным напряжением 9 В. Такого напряжения вполне достаточно для обеспечения требуемого тока заряда аккумулятора с напряжением 4,4 В.

Для интереса подключил фонарь к новому блоку питания и измерял ток зарядки. Величина его составила 620 мА, и это при напряжении 9 В. При напряжении 12 В ток был порядка 900 мА, значительно превышающий нагрузочную способность адаптера и рекомендуемый ток заряда аккумулятор. По этой причине от перегрева и сгорела первичная обмотка трансформатора.

Доработка электрической принципиальной схемы
светодиодного аккумуляторного фонаря «Фотон»

Для устранения схемотехнических нарушений с целью обеспечения надежной и долговременной работы в схему фонаря были внесены изменения и выполнена доработка печатной платы.


На фотографии представлена электрическая принципиальная схема переделанного светодиодного фонаря «Фотон». Синим цветом, показаны дополнительно установленные радиоэлементы. Резистор R2 ограничивает ток заряда аккумулятора до 120 мА. Для увеличения тока зарядки нужно уменьшить номинал резистора. Резисторы R3-R5 ограничивают и выравнивают ток, протекающий через светодиоды EL1-EL3 при свечении фонаря. Светодиод EL4 с последовательно включенным токоограничивающим резистором R1 установлен для индикации процесса зарядки аккумулятора, так как разработчиками конструкции фонаря об этом не позаботились.

Для установки на плате токоограничивающих резисторов печатные дорожки были перерезаны, как показано на фотографии. Ограничивающий ток заряда резистор R2 был припаян одним концом к контактной площадке, к которой до этого был припаян положительный провод, идущий от зарядного устройства, а отпаянный провод припаян ко второму выводу резистора. К этой же контактной площадке был припаян дополнительный провод (на снимке желтого цвета), предназначенный для подключения индикатора зарядки аккумулятора.


Резистор R1 и светодиод индикаторный EL4 были размещены в ручке фонаря, рядом с разъемом для подключения зарядного устройства X1. Вывод анода светодиода был припаян к выводу 1 разъема X1, а ко второму выводу, катоду светодиода токоограничивающий резистор R1. Ко второму выводу резистора был припаян провод (на фото желтого цвета), соединяющий его с выводом резистора R2, припаянного к печатной плате. Резистор R2, для простоты монтажа, можно было разместить и в ручке фонарика, но так как он при зарядке нагревается, то решил его разместить в более свободном пространстве.

При доработке схемы применены резисторы типа МЛТ мощностью 0,25 Вт, кроме R2, который рассчитан на 0,5 Вт. Светодиод EL4 подойдет любого типа и цвета свечения.


На этой фотографии показана работа индикатора зарядки во время зарядки аккумулятора. Установка индикатора позволила не только следить за процессом зарядки аккумулятора, но и контролировать наличие напряжения в сети, исправность блока питания и надежность его подключения.

Чем заменить сгоревшей ЧИП

Если вдруг ЧИП – специализированная микросхема без маркировки в светодиодном фонаре «Фотон», или аналогичном, собранном по подобной схеме, выйдет из строя, то для восстановления работоспособности фонаря ее можно успешно заменить механическим выключателем.


Для этого нужно удалить из платы микросхему D1, а вместо транзисторного ключа Q1 подключить обыкновенный механический выключатель, как показано на выше приведенной электрической схеме. Выключатель на корпусе фонаря можно установить вместо кнопки S1 или в любом другом подходящем месте.

Ремонт и переделка светодиодного фонаря
14Led Smartbuy Colorado

Перестал включаться светодиодный фонарь Smartbuy Colorado, хотя три батарейки типоразмера ААА были установлены новые.


Влагонепроницаемый корпус был выполнен из анодированного алюминиевого сплава, имел длину 12 см. Фонарик выглядел стильно и был удобен в эксплуатации.

Как проверить в светодиодном фонаре батарейки на пригодность

Ремонт любого электроприбора начинается с проверки источника питания, поэтому, не смотря на то, что в фонарь были установлены новые батарейки, ремонт следует начинать с их проверки. В фонаре Smartbuy батарейки устанавливаются в специальный контейнер, в котором с помощью перемычек соединены последовательно. Для того чтобы получить доступ к батарейкам фонарика нужно разобрать, вращая против часовой стрелки заднюю крышку.


Батарейки в контейнер необходимо устанавливать, соблюдая обозначенную на нем полярность. На контейнере тоже обозначена полярность, поэтому его нужно заводить в корпус фонаря стороной, на которой нанесен знак «+».

В первую очередь необходимо визуально проверить все контакты контейнера. Если на них имеются следы окислов, то контакты необходимо зачистить до блеска с помощью наждачной бумаги или соскоблить окисел лезвием ножа. Для исключения повторного окисления контактов их можно смазать тонким слоем любого машинного масла.

Далее нужно проверить пригодность батареек. Для этого, прикоснувшись щупами мультиметра, включенного в режим измерения постоянного напряжения , необходимо измерять напряжение на контактах контейнера. Три батарейки включены последовательно и каждая из них должна выдавать напряжение 1,5 В, следовательно напряжение на выводах контейнера должно составлять 4,5 В.

Если напряжение меньше указанного, то необходимо проверить правильность полярности батареек в контейнере и измерять напряжение каждой из них индивидуально. Возможно, села только одна из них.

Если с батарейками все в порядке, то нужно вставить, соблюдая полярность контейнер в корпус фонаря, закрутить крышку и проверить его на работоспособность. При этом надо обратить внимание на пружину в крышке, через которую передается питающее напряжение на корпус фонаря и с него прямо на светодиоды. На ее торце не должно быть следов коррозии.

Как проверить исправность выключателя

Если батарейки хорошие и контакты чистые, но светодиоды не светят, то нужно проверить выключатель.

В фонаре Smartbuy Colorado установлен кнопочный герметичный выключатель с двумя фиксированными положениями, замыкающий провод, идущий от положительного вывода контейнера батареек. При первом нажатии на кнопку выключателя его контакты замыкаются, а при повторном – размыкаются.

Так как в фонаре установлены батарейки, то проверить выключатель можно тоже с помощью мультиметра, включенного в режим вольтметра. Для этого нужно вращением против часовой стрелки, если смотреть на светодиоды, открутить его переднюю часть и отложить в сторону. Далее одним щупом мультиметра прикоснуться к корпусу фонарика, а вторым к контакту, который находится в глубине по центру пластиковой детали, показанной на фотографии.

Вольтметр должен показать напряжение 4,5 В. Если напряжение отсутствует нужно нажать кнопку выключателя. Если он исправен, то напряжение появится. В противном случае нужно ремонтировать выключатель.

Проверка исправности светодиодов

Если на предыдущих шагах поиска неисправность обнаружить не удалось, то на следующем этапе нужно проверить надежность контактов, подающих питающее напряжение на плату со светодиодами, надежность их пайки и исправность.

Печатная плата с запаянными в нее светодиодами фиксируется в головной части фонаря с помощью стального подпружиненного кольца, через которое по корпусу фонаря одновременно подается на светодиоды питающее напряжение от минусового вывода контейнера батареек. На фотографии кольцо показано со стороны, которой оно прижимает печатную плату.


Стопорное кольцо зафиксировано довольно крепко, и извлечь его удалось только с помощью приспособления, показанного на фотографии. Такой крючок можно выгнуть из стальной полоски своими руками.

После извлечения стопорного кольца печатная плата со светодиодами, которая изображена на фото, легко извлеклась из головной части фонаря. Сразу бросилось в глаза отсутствие токоограничивающих резисторов, все 14 светодиодов были включены параллельно и через выключатель непосредственно к батарейкам. Подключение светодиодов непосредственно к батарейке недопустима, так как величина протекающего через светодиоды тока ограничивается только внутренним сопротивлением батареек и может вывести светодиоды из строя. В лучшем случае сильно сократит срок их службы.

Так как в фонаре все светодиоды были включены параллельно, то проверить их с помощью мультиметра, включенного в режим измерения сопротивления не представлялось возможным. Поэтому на печатную плату было подано питающее постоянное напряжение от внешнего источника величиной 4,5 В с ограничением тока до 200 мА. Все светодиоды засветились. Стало очевидным, что неисправность фонаря заключалась в плохом контакте печатной платы с фиксирующим кольцом.

Ток потребления светодиодного фонаря

Для интереса измерял ток потребления светодиодами от батареек при включении их без токоограничительного резистора.

Ток составил более 627 мА. В фонарике установлены светодиоды типа HL-508H , рабочий ток которых не должен превышать 20 мА. 14 светодиодов включены параллельно, следовательно, суммарный ток потребления не должен превышать 280 мА. Таким образом, ток, протекающий через светодиоды, превысил номинальный более чем в два раза.

Такой форсированный режим работы светодиодов недопустим, так как ведет к перегреву кристалла, и как следствие, преждевременный выход светодиодов из строя. Дополнительным недостатком является быстрый разряд батареек. Их хватит, если раньше не перегорят светодиоды, не более чем на час работы.


Конструкция фонарика не позволяла впаять токоограничительные резисторы последовательно с каждым светодиодом, поэтому пришлось установить один общий на все светодиоды. Номинал резистора пришлось определять экспериментально. Для этого фонарик был запитан от штанных батареек и в разрыв положительного провода был включен амперметр последовательно с резистором номиналом 5,1 Ом. Ток составил около 200 мА. При установке резистора 8,2 Ом ток потребления составил 160 мА, что, как показала проверка, вполне достаточно для хорошего освещения на расстоянии не менее 5 метров. На ощупь резистор не нагревался, поэтому подойдет любой мощности.

Переделка конструкции

После проведенного исследования стало очевидным, что для надежной и долговечной работы фонаря необходимо дополнительно установить ограничивающий ток резистор и продублировать дополнительным проводником соединение печатной платы с светодиодами и фиксирующим кольцом.

Если раньше надо было, чтобы отрицательная шина печатной платы касалась корпуса фонаря, то в связи с установкой резистора, понадобилось исключить касание. Для этого с печатной платы по всей ее окружности, со стороны токоведущих дорожек с помощью надфиля был сточен угол.

Для исключения касания прижимного кольца к токоведущим дорожкам при фиксации печатной платы на нее были приклеены клеем «Момент» четыре резиновых изолятора толщиной около двух миллиметров, как показано на фотографии. Изоляторы можно изготовить из любого диэлектрического материала, например пластмассы или плотного картона.

Резистор был заранее припаян к прижимному кольцу, а к крайней дорожке печатной платы припаян отрезок провода. На проводник была надета изолирующая трубка, и затем провод припаян ко второму выводу резистора.



После простой модернизации фонаря своими руками он стал стабильно включаться и световой луч хорошо освещать предметы на расстоянии более восьми метров. Дополнительно срок службы батареек увеличился более чем в три раза, и многократно повысилась надежность работы светодиодов.

Анализ причин отказов отремонтированных китайских светодиодных фонарей показал, что все они вышли из строя из-за безграмотно разработанных электрических схем. Осталось только выяснить, сделано это намеренно, чтобы сэкономить на комплектующих и сократить срок эксплуатации фонарей (чтобы больше покупали новые), или в результате безграмотности разработчиков. Я склоняюсь к первому предположению.

Ремонт светодиодного фонаря RED 110

Попал в ремонт фонарик со встроенным кислотным аккумулятором китайского производителя торговой марки RED. В фонаре имелось два излучателя: – с лучом в виде узкого пучка и излучающий рассеянный свет.


На фотографии представлен внешний вид фонаря RED 110. Фонарь мне сразу понравился. Удобная форма корпуса, два режима работы, петля для подвески на шею, выдвигающаяся вилка подключения к сети для зарядки. В фонаре секция светодиодов рассеянного света светила, а узкого пучка – нет.


Для ремонта сначала было откручено кольцо черного цвета, фиксирующее рефлектор, а затем выкручен один саморез в зоне петли. Корпус легко разделился на две половинки. Все детали были закреплены на саморезах и легко снимались.

Схема зарядного устройства была выполнена по классической схеме . Из сети через токоограничивающий конденсатор емкостью 1 мкф напряжение подавалось на выпрямительный мост из четырех диодов и далее на выводы аккумулятора. Напряжение с аккумулятора на светодиод узкого луча подавалось через токоограничивающий резистор 460 Ом.

Все детали были смонтированы на односторонней печатной плате. Провода были припаяны непосредственно к контактным площадкам. Внешний вид печатной платы представлен на фотографии.


10 светодиодов бокового света были соединены параллельно. Напряжение питания на них подавалось через общий токоограничивающий резистор 3R3 (3,3 Ом), хотя по правилам для каждого светодиода нужно устанавливать отдельный резистор.

При внешнем осмотре светодиода узкого пучка дефектов обнаружено не было. При подаче питания через включатель фонарика с аккумулятора напряжение на выводах светодиода присутствовало, и он нагревался. Стало очевидным, что кристалл пробит, и это подтвердила прозвонка мультиметром . Сопротивление составило при любом подключении щупов к выводам светодиода 46 Ом. Светодиод был неисправен и требовалась его замена.

Для удобства работы от платы светодиода был отпаяны провода . После освобождения выводов светодиода от припоя оказалось, что светодиод намертво держится всей плоскостью обратной стороны на печатной плате. Для его отделения пришлось закрепить плату в настольных висках. Далее острый конец ножа установить в место соединения светодиода с платой и легонько ударить по ручке ножа молотком. Светодиод отскочил.

Маркировка на корпусе светодиода, как обычно, отсутствовала. Поэтому необходимо было определить его параметры и подобрать подходящий для замены. По габаритным размерам светодиода, напряжению аккумулятора и величине токоограничивающего резистора было определено, что для замены подойдет светодиод мощностью 1 Вт (ток 350 мА, падение напряжения 3 В). Из «Справочной таблицы параметров популярных SMD светодиодов» для ремонта был выбран светодиод LED6000Am1W-A120 белого свечения.

Печатная плата, на которой установлен светодиод выполнена из алюминия и одновременно служит для отвода тепла от светодиода. Поэтому при установке его необходимо обеспечить хороший тепловой контакт за счет плотного прилегания задней плоскости светодиода к печатной плате. Для этого перед запайкой на места контакта поверхностей была нанесена термопаста , которая применяется при установке радиатора на процессор компьютера.

Для того, чтобы обеспечить плотное прилегание плоскости светодиода к плате необходимо сначала положить его на плоскость и немного отогнуть вверх выводы, чтобы они отступали от плоскости на 0,5 мм. Далее выводы залудить припоем, нанести термопасту и установить светодиод на плату. Далее прижать его к плате (удобно это сделать отверткой с вынутой битой) и прогреть выводы паяльником. Далее убрать отвертку, ножом прижать в месте изгиба вывода его к плате и прогреть паяльником. После затвердевания припоя нож убрать. За счет пружинных свойств выводов светодиод будет плотно прижат к плате.

При установке светодиода необходимо соблюдать полярность. Правда в этом случае, если будет допущена ошибка, то можно будет поменять местами подающие напряжение провода. Светодиод припаян и можно проверить его работу и измерять потребляемый ток и падение напряжения.

Ток протекающий через светодиод составил 250 мА, падение напряжения 3,2 В. Отсюда потребляемая мощность (нужно умножить ток на напряжение) составила 0,8 Вт. Можно было увеличить рабочий ток светодиода уменьшив сопротивление 460 Ом, но я этого делать не стал, так как яркость свечения была достаточной. Зато светодиод будет работать в более легком режиме, меньше нагреваться и увеличится время работы фонарика от одной зарядки.


Проверка нагрева светодиода проработавшего в течении часа показала эффективный отвод тепла. Он нагрелся до температуры не более 45°С. Ходовые испытания показали достаточную дальность освещения в темноте, более 30 метров.

Замена кислотного аккумулятора в светодиодном фонаре

Вышедший из строя в светодиодном фонаре кислотный аккумулятор можно заменить как аналогичным кислотным, так и литий-ионным (Li-ion) или никель-металгидридными (Ni-MH) аккумуляторами типоразмера АА или ААА.

В ремонтируемых китайских фонарях были установлены свинцово-кислотные AGM аккумуляторы разных габаритных размеров без маркировки напряжением 3,6 В. По расчету емкость этих аккумуляторов составляет от 1,2 до 2 А×часов.

В продаже можно найти аналогичный кислотный аккумулятор российского производителя для ИБП 4V 1Ah Delta DT 401, который имеет напряжение на выходе 4 В при емкости 1 А×часа, стоимостью пару долларов. Для замены достаточно просто, соблюдая полярность, перепаять два провода.

Через несколько лет эксплуатации светодиодный фонарь Lentel GL01, ремонт которого описан в начале статьи, опять принесли мне в ремонт. Диагностика показала, что выработал свой ресурс кислотный аккумулятор.


Был куплен для замены аккумулятор Delta DT 401, но оказалось, что его геометрические размеры были больше, чем неисправного. Штатный аккумулятор фонарика имел размеры 21×30×54 мм и был выше на 10 мм. Пришлось дорабатывать корпус фонарика. Поэтому прежде, чем покупать новый аккумулятор убедитесь, что он вместится в корпус фонаря.


Был удален упор в корпусе и ножовкой по металлу отпилена часть печатной платы, с которой предварительно был выпаян резистор и один светодиод.


После доработки новый аккумулятор хорошо установился в корпус фонаря и теперь, надеюсь, прослужит не один год.

Замена кислотного аккумулятора
аккумуляторами типоразмера АА или ААА

Если нет возможности приобрести аккумулятор 4V 1Ah Delta DT 401, то его можно успешно заменить тремя любыми пальчиковыми никель-металгидридными (Ni-MH) аккумуляторами типоразмера АА или ААА емкостью от 1 А×часа, которые имеют напряжение 1,2 В. Для этого достаточно соединить последовательно, соблюдая полярность, три аккумулятора проводами методом пайки. Однако экономически такая замена нецелесообразна, так как стоимость трех качественных пальчиковых аккумуляторов типоразмера АА может превышать стоимость покупки нового светодиодного фонаря.

Но где гарантия, что в электрической схеме нового светодиодного фонаря не имеются ошибки, и не придется его тоже дорабатывать. Поэтому считаю, что замена свинцового аккумулятора в доработанном фонаре целесообразна, так как обеспечит надежную работу фонаря еще несколько лет. Да и всегда будет приятно пользоваться фонариком, отремонтированным и модернизированным своими руками.

Вопрос экономии электроэнергии сегодня актуален, как никогда. Лампы накаливания потребляют большое количество электричества, но при этом не всегда обеспечивают должное освещение. Им на замену пришли светодиодные уличные фонари, осветители для дома и для автомобиля. О том, как самостоятельно сделать светодиодный фонарь, читайте далее.

Инструменты:

  • лупа;
  • паяльник;
  • ножницы или нож;
  • старый фонарь.

Материалы:

  • диоды;
  • фольга;
  • конденсатор;
  • трансформатор;
  • нефритовое кольцо;
  • батарейки или аккумуляторы;
  • транзистор;

Один из простейших способов сделать светодиодную лампу – использовать корпус неработающей старой и установить в него отдельные светодиоды. Это позволяет без дополнительных усилий делать светодиодные фонари своими руками. Но когда работа делается с нуля, приходится работать более тщательно и ответственно. Мы предлагаем вашему вниманию сразу три схемы, по которым можно сделать мощный и экономный диодный фонарь. В каждой из предложенных схем советуем использовать светодиоды с мощностью 3 Вт. Цвет свечения можете подбирать на свое усмотрение (теплый или холодный). Но для дома более приятным будет теплый цвет, придавая помещению пастельные тона. На улице же лучше использовать холодный – он будет немного ярче.

Схема светодиодного фонаря №1

В пределах 3,7-14 вольт данная схема показывает отличную стабильность в работе. Обратите внимание, что может падать коэффициент полезного действия при повышении напряжения. На выходе можно настроить напряжение 3,7 и поддерживать его во всем диапазоне. При помощи резистора R3 задайте выходное напряжение, но при этом не уменьшайте его слишком сильно. Нужно рассчитывать максимальный ток на LED1-светодиоде, а также максимально допустимое напряжение на LED2. Если ваш фонарь будет получать питание от Li-ion аккумулятора, то коэффициент полезного действия составит 90-95%. 4,2 вольта обеспечивают КПД в пределах 90%. 3,8 – 95%. Рассчитать можно простой формулой: P = U х I.

Выбранный светодиод будет потреблять 0,7 А при напряжении 3,7 вольт. Делаем просчет: 0,7 х 3,7 = 2,59 Вт. От полученного числа отнимаем напряжение аккумулятора и умножаем на потребляемый ток: (4,2 – 3,7) х 0,7 = 0,35 Вт. И теперь вы с легкостью можете узнать точный КПД: (100 / (2.59 + 0.37)) х 2.59 = 87.5%.

Мощные светодиоды обязательно нужно устанавливать на радиатор. Его можно взять с компьютерного блока питания.

Можно использовать следующий вариант расположения деталей:

Обратите внимание, что при этом транзистор не касается к плате. Произведите следующие действия:

  1. Между резистором и платой просуньте лист плотной бумаги или нарисуйте схему платы.
  2. Сделайте ее так же, как на лицевой стороне листа.
  3. Чтобы обеспечить питание, можно использовать две батареи от ноутбука. Можно также взять телефонные аккумуляторы. Главное, чтобы в сумме они давали ток не менее 5 мАч.
  4. Батареи или аккумуляторы соединяйте параллельно.

Схема светодиодного фонаря №2

Второй вариант – довольно экономичный. Вам понадобятся КТ819, КТ315 и КТ361. Используя их можно сделать неплохой стабилизатор, хотя потери будут незначительно большими, чем в предыдущем варианте. Схема довольно схожа с первой, однако все делается с точностью до наоборот. Напряжение подается конденсатором С4. Основное отличие в том, что выходной транзистор открывается резистором R1 и КТ315. В первой же схеме закрывается и открывается только КТ315.

Все детали должны быть расположены следующим образом:

Дополнительный светодиод обеспечивает при этом хорошую стабилизацию. Следующая информация поможет при создании других низковольтных стабилизаторов.

  1. Температурная стабилизация. Если вы имеете опыт и знания в электронике, то понимаете, что это важный момент, если фонарь будет использоваться в разное время года и в разных условиях на улице. В описанных выше схемах все происходит по следующей системе: когда температура повышается, происходит расширение канала проводника, пропуская ощутимо большее количества электронов. При этом сопротивление его снижается, а проходимый ток растет. Из-за этого также увеличивается сам светодиод и закрывает транзисторы, тем самым стабилизируя работу. Такая схема полноценно работает без сбоев при температуре от -20 до +50 градусов. Этого более чем достаточно. Вы можете найти и другие схемы, но зачастую даже при незначительном повышении температуры происходит сбой стабилизации, из-за чего диоды сразу же перегорают.
  2. Светодиод. Устройство светодиодного фонаря такого типа подразумевает, что при увеличении напряжения вместе с ним растет и ток, который потребляется. Транзистор в данном случае гораздо лучше реагирует на небольшие изменения в напряжении, чем обычный резисторный усилитель. К тому же, для него нужна высокая степень усиления. Это значительно уменьшает количество использованных деталей, а значит, экономит время и деньги.

Схема светодиодного фонаря №3

Последняя рассматриваемая схема позволяет значительно увеличить КПД, получить более высокую яркость свечения. В данном случае вам понадобятся четыре аккумулятора с общей емкостью не менее 13 Ач и дополнительная фокусная линза для светодиодов.

В этом случае в дополнительном светодиоде необходимости нет. Все делается в SMD исполнении без транзисторов, которые потребляют энергию дополнительно. Благодаря этому срок автономной работы ощутимо увеличивается. Стабилизатором может выступать TL431. При этом коэффициент полезного действия может варьироваться от 90 до 99 процентов, что более чем хорошо.

На выходе лучше всего ставить мощность 3,9 вольт. При этом светодиоды не будут перегорать многие месяцы, а то и годы. Хотя вполне возможен незначительный нагрев радиатора. Но это нормально.

Сделать фонарь от 1,5 В

Если вам нет необходимости разбираться в сложных схемах, чтобы получить мощный осветительный прибор, предлагаем также простой способ, с помощью которого можно сделать простейшие (хотя и довольно слабые) светодиодные фонари для дома. Такого фонаря вполне хватит для домашнего использования.

Чтобы упростить задачу, можно взять старый фонарик с лампой накаливания и работать с ним. Порядок действий следующий:

  1. Возьмите нефритовое кольцо и обмотайте проводом толщиной до 0,5 мм. Обязательно нужно сделать петлю или отвод в сторону.
  2. Соединяем между собой трансформатор, транзистор и светодиод. Чтобы получить более яркий свет, можно дополнительно установить конденсатор. Но это необязательно.
  3. Проверьте, горит ли светодиод. Если нет, то причина может быть в неправильной полярности аккумулятора, неправильном подключении транзистора и непосредственно светодиода. Не расстраивайтесь, если с первого раза схема не заработает.
  4. Чтобы светодиод светил ярче, используйте конденсатор С1.
  5. Установите переменный резистор вместо постоянного (подойдет на 1,5 кОма) и покрутите. Когда обнаружите положение, при котором диод начтет светить ярче и зафиксировать положение.

Когда схема готова, диод светит с максимальной яркостью и все работает, можно переходить к финишной работе.

  1. Измерьте диаметр трубки фонарика и вырежьте по нему круг из стеклотекстолита.
  2. Подберите подходящие детали нужных размеров и номинала.
  3. Сделайте разметку платы, разрежьте фольгу ножом и закрепите на круге.
  4. Чтобы спаять плату, лучше всего воспользоваться паяльником со специальным жалом. Если такового нет, можно просто обмотать вокруг паяльника зачищенную проволоку таким образом, чтобы один ее конец выступал вперед. Именно им вы и будете работать.
  5. Детали вместе с светодиодом, конденсатором и трансформатором припаяйте к плате. Изначально можно припаять не сильно, чтобы проверить работоспособность. Если все нормально работает, припаивайте окончательно.
  6. Когда все работает и плотно держится, можно вставить получившуюся плату в трубку фонарика. Если она входит без проблем, то вскройте края круга лаком. Это необходимо, чтобы не было контакта, ведь сам корпус в данном случае – минус.

Сделанный фонарь может полноценно и долго работать даже на разряженной батарее. Если батарейки нет вообще, лампочка загорится даже от нестандартного аккумулятора. Например, если в картошку вставить две проволоки из разных металлов и подключить светодиод. Не факт, что такой способ вам понадобится, но случаи бывают разные.

Светодиодные фонари получили хорошие отзывы от покупателей за счет своего низкого энергопотребления, невысокой стоимости и надежности. Лампы накаливания – далеко не лучший на сегодняшний день вариант. И теперь вы знаете, ка сделать светодиодный фонарик самостоятельно из подручных средств.